Whole-genome sequencing and analysis of a adrostenedione yielding strains Mycobacterium neoaurum MN4
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    [Objective] Mycobaterium neoaurum MN4 is a substrate-resistant mutant strain with high-yield androstenedione. In order to further study MN4 strain substrate-resistant mechanism and androstenedione biosynthetic pathway, it is necessary to decipher the MN4 strain genome.[Methods] The genome was sequenced using highthroughput sequencing technology, and analyzed using relevant software for genome assembly, gene prediction and functional annotation, COG cluster analysis and secondary metabolite biosynthesis gene clusters prediction.[Results] The whole genome is assembled into 33 contigs, and the genome size is 5.39 Mb, GC content of 66.9% with encoding 4920 protein genes. The genome sequence was deposited in the GenBank database under the accession number JXYZ00000000.[Conclusion] This study is the first report of androstenedione producing strain Mycobacterium neoaurum MN4 genome sequence, and provides a theoretical basis for further heterologous expression of secondary metabolites on Mycobacterium neoaurum MN4.

    Reference
    [1] Tong WY, Dong X. Microbial biotransformation:recent developments on steroid drugs. Recent Patents on Biotechnology, 2009, 3(2):141-153.
    [2] Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE. Control of mammary stem cell function by steroid hormone signalling. Nature, 2010, 465(7299):798-802.
    [3] Callewaert F, Boonen S, Vanderschueren D. Sex steroids and the male skeleton:a tale of two hormones. Trends in Endocrinology and Metabolism, 2010, 21(2):89-95.
    [4] Rubtsov AV, Rubtsova K, Kappler JW, Marrack P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Reviews, 2010, 9(7):494-498.
    [5] Bäckström T, Haage D, Löfgren M, Johansson IM, Strömberg J, Nyberg S, Andréen L, Ossewaardge L, van Wingen GA, Turkmen S, Bengtsson SK. Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons. Neuroscience, 2011, 191:46-54.
    [6] Douglas M. Neurology of endocrine disease. Clinical Medicine, 2010, 10(4):387-390.
    [7] Garcia-Segura LM, Balthazart J. Steroids and neuroprotection:new advances. Frontiers in Neuroendocrinology, 2009, 30(2):4-5.
    [8] Conner AH, Nagaoka M, Rowe JW, Perlman D. Microbial conversion of tall oil sterols to C19 steroids. Applied and Environmental Microbiology, 1976, 32(2):310-311.
    [9] He XJ, Liu B, Wang GH, Wang XL, Su LN, Qu GX, Yao XS. Microbial metabolism of methyl protodioscin by Aspergillus niger culture-a new androstenedione producing way from steroid. The Journal of Steroid Biochemistry and Molecular Biology, 2006, 100(1/3):87-94.
    [10] Sih CJ, Wang KC. A new route to estrone from sterols. Journal of the American Chemical Society, 1965, 87(6):1387-1388.
    [11] Zhang XY, Ruan H, He GQ. Advances in micobial transformation of phytosterols to androstenedione. Journal of Chinese Institute of Food Science and Technology, 2012, 12(7):162-170. (in Chinese)张小燕, 阮晖, 何国庆. 微生物降解植物甾醇侧链生产雄甾烯二酮的研究进展. 中国食品学报, 2012, 12(7):162-170.
    [12] Yang Y, Jiang ST. Advance in degrading side chain of sterols of getting androst-4-ene-3, 17-dione by microorganism. Microbiology China, 2006, 36(6):142-145. (in Chinese)杨英, 姜绍通. 微生物降解甾醇侧链转化雄甾-4-烯-3, 17-二酮的研究进展. 微生物学通报, 2006, 36(6):142-145.
    [13] Hopwood DA. Streptomyces in nature and medicine:the antibiotic makers. Journal of the History of Medicine and Allied Sciences, 2008, 63(2):273-274.
    [14] Ron EZ, Rosenberg E. Biosurfactants and oil bioremediation. Current Opinion in Biotechnology, 2002, 13(3):249-252.
    [15] Kieslich K. Microbial side-chain degradation of sterols. Journal of Basic Microbiology, 1985, 25(7):461-474.
    [16] Marsheck WJ, Kraychy S, Muir RD. Microbial degradation of sterols. Applied Microbiology, 1972, 23(1):72-77.
    [17] Sun WJ, Wang XL. Screening of substrate-resistant mutant strains producing androst-4-ene-3, 17-dione and optimization of biotransformation medium. Food Science, 2014, 35(19):158-163. (in Chinese)孙婉菊, 王筱兰. 雄烯二酮耐底物突变株的筛选及生物转化培养基优化. 食品科学, 2014, 35(19):158-163.
    [18] Zerbino DR, Birney E. Velvet:algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 2008, 18(5):821-829.
    [19] Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 2007, 23(6):673-679.
    [20] Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 2003, 31(1):365-370.
    [21] Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley R, Courcelle E, Durbin R, Falquet L, Fleischman W, Gouzy J, Giffith-Jones S, Haft D, Hermiakob H, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Orchard S, Pagni M, Peyruc D, Ponting CP, Servant F, Sigrist CJA. InterPro:an integrated documentation resource for protein families, domains and functional sites. Briefings in Bioinformatics, 2002, 3(3):225-235.
    [22] Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1):27-30.
    [23] Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck k, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R. The gene ontology (GO) database and informatics resource. Nucleic Acids Research, 2004, 32(Suppl 1):D258-D61.
    [24] Lowe TM, Eddy SR. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 1997, 25(5):955-964.
    [25] Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer:consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 2007, 35(9):3100-3108.
    [26] Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T. antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Research, 2013, 41(W1):W204-W212.
    [27] Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. antiSMASH:rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 2011, 39(Suppl 2):W339-W346.
    [28] Yao K, Xu LQ, Wang FQ, Wei DZ. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3, 17-dione through the catabolism of sterols. Metabolic Engineering, 2014, 24:181-191.
    [29] Maresca JA, Romberger SP, Bryant DA. Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases. Journal of Bacteriology, 2008, 190(19):6384-6391.
    [30] Ofer N, Wishkautzan M, Meijler M, Wang Y, Speer A, Niederweis M, Gur E. Ectoine biosynthesis in Mycobacterium smegmatis. Applied and Environmental Microbiology, 2012, 78(20):7483-7486.
    [31] Belisle JT, McNeil MR, Chatterjee D, Inamine JM, Brennan PJ. Expression of the core lipopeptide of the glycopeptidolipid surface antigens in rough mutants of Mycobacterium avium. The Journal of Biological Chemistry, 1993, 268(14):10510-10516.
    [32] Liu C, Zhu J, Li YY, Zhang JL, Lu CH, Wang HX, Shen YM. In vitro reconstitution of a PKS pathway for the biosynthesis of galbonolides in Streptomyces sp. LZ35. ChemBioChem, 2015, 16(6):998-1007.
    [33] Reddy PV, Puri RV, Chauhan P, Kar R, Rohilla A, Khera A, Tyagi AK. Disruption of mycobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth and virulence. The Journal of Infectious Diseases, 2013, 208(8):1255-1265.
    [34] Isaac BG, Ayer SW, Elliott RC, Stonard RJ. Herboxidiene:a potent phytotoxic polyketide from Streptomyces sp. A7847. Journal of Organic Chemistry, 2002, 57(26):7220-7226.
    [35] Yu X, Metsä-ketelä M, Tsai SC, Liu HW, Rohr J. Roles of the key enzymes involved in the angucycline core formation in the BE-7585A biosynthesis. Planta Medica, 2014, 80(10):823.
    [36] van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Molecular Microbiology, 2002, 45(4):1007-1018.
    [37] Sripalakit P, Wichai U, Saraphanchotiwitthaya A. Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid-converting, microbial strains. Journal of Molecular Catalysis B:Enzymatic, 2006, 41(1/2):49-54.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Lingxia Xu, Xiaolan Wang, Huilin Yang, Lin Yang, Wenjie Shi, Yawen Xie, San Lin. Whole-genome sequencing and analysis of a adrostenedione yielding strains Mycobacterium neoaurum MN4. [J]. Acta Microbiologica Sinica, 2016, 56(8): 1358-1367

Copy
Share
Article Metrics
  • Abstract:929
  • PDF: 2398
  • HTML: 618
  • Cited by: 0
History
  • Received:November 26,2015
  • Revised:February 08,2016
  • Online: August 02,2016
Article QR Code