ATP-independent proteases and peptidases from hyperthermophilic archaea
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Proteases and peptidases play important roles in nutrient metabolism, protein turnover and processing, and protein quality control in hyperthermophilic archaea. Due to their high stability and activity at high temperatures, proteases and peptidases from hyperthermophilic archaea are especially valuable to study mechanisms that stabilize protein structure and function at the maximum temperature capable of supporting life, and have great potential in industrial application. This review summarizes types, functions, catalytic properties, thermostabilizing mechanisms, and application potential of ATP-independent proteases and peptidases from hyperthermophilic archaea.

    Reference
    [1] Stetter KO. A brief history of the discovery of hyperthermophilic life. Biochemical Society Transactions, 2013, 41(1):416-420.
    [2] Kashefi K, Lovley DR. Extending the upper temperature limit for life. Science, 2003, 301(5635):934.
    [3] Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G. Exploration of extremophiles for high temperature biotechnological processes. Current Opinion in Microbiology, 2015, 25:113-119.
    [4] Ward DE, Shockley KR, Chang LS, Levy RD, Michel JK, Conners SB, Kelly RM. Proteolysis in hyperthermophilic microorganisms. Archaea, 2002, 1(1):63-74.
    [5] Snowden LJ, Blumentals Ⅱ, Kelly RM. Regulation of proteolytic activity in the hyperthermophile Pyrococcus furiosus. Applied and Environmental Microbiology, 1992, 58(4):1134-1141.
    [6] Lee HS, Kim YJ, Bae SS, Jeon JH, Lim JK, Jeong BC, Kang SG, Lee JH. Cloning, expression, and characterization of a methionyl aminopeptidase from a hyperthermophilic archaeon Thermococcus sp. NA1. Marine Biotechnology, 2006, 8(4):425-432.
    [7] Singleton MR, Taylor SJC, Parrat JS, Littlechild JA. Cloning, expression, and characterization of pyrrolidone carboxyl peptidase from the archaeon Thermococcus litoralis. Extremophiles, 2000, 4(5):297-303.
    [8] Szeltner Z, Kiss AL, Domokos K, Harmat V, Náray-Szabó G, Polgár L. Characterization of a novel acylaminoacyl peptidase with hexameric structure and endopeptidase activity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2009, 1794(8):1204-1210.
    [9] Lee HS, Cho Y, Kim YJ, Nam K, Lee JH, Kang SG. Biochemical characterization of deblocking aminopeptidase from hyperthermophilic archaeon Thermococcus onnurineus NA1. Journal of Bioscience and Bioengineering, 2007, 104(3):188-194.
    [10] Szabó Z, Albers SV, Driessen AJM. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus. Journal of Bacteriology, 2006, 188(4):1437-1443.
    [11] Matsumi R, Atomi H, Imanaka T. Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 2005, 187(20):7072-7080.
    [12] Durá MA, Rosenbaum E, Larabi A, Gabel F, Vellieux FMD, Franzetti B. The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic archaea. Molecular Microbiology, 2009, 72(1):26-40.
    [13] Kanai T, Yasukochi A, Simons JR, Scott JW, Fukuda W, Imanaka T, Atomi H. Genetic analyses of the functions of[NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles, 2017, 21(1):27-39.
    [14] Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea:methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiology Reviews, 2011, 35(4):577-608.
    [15] Michels PC, Clark DS. Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. Applied and Environmental Microbiology, 1997, 63(10):3985-3991.
    [16] Cannio R, Catara G, Fiume I, Balestrieri M, Rossi M, Palmieri G. Identification of a cell-bound extracellular protease overproduced by Sulfolobus solfataricus in peptide-rich media. Protein & Peptide Letters, 2010, 17(1):78-85.
    [17] Gogliettino M, Riccio A, Cocca E, Rossi M, Palmieri G, Balestrieri M. A new pepstatin-insensitive thermopsin-like protease overproduced in peptide-rich cultures of Sulfolobus solfataricus. International Journal of Molecular Sciences, 2014, 15(2):3204-3219.
    [18] Du XL, Choi IG, Kim R, Wang WR, Jancarik J, Yokota H, Kim SH. Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-Å resolution. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14079-14084.
    [19] Schoehn G, Vellieux FMD, Durá MA, Receveur-Bréchot V, Fabry CMS, Ruigrok RWH, Ebel C, Roussel A, Franzetti B. An archaeal peptidase assembles into two different quaternary structures:a tetrahedron and a giant octahedron. The Journal of Biological Chemistry, 2006, 281(47):36327-36337.
    [20] Appolaire A, Rosenbaum E, Durá MA, Colombo M, Marty V, Savoye MN, Godfroy A, Schoehn G, Girard E, Gabel F, Franzetti B. Pyrococcus horikoshii TET2 peptidase assembling process and associated functional regulation. The Journal of Biological Chemistry, 2013, 288(31):22542-22554.
    [21] Appolaire A, Durá MA, Ferruit M, Andrieu JP, Godfroy A, Gribaldo S, Franzetti B. The TET2 and TET3 aminopeptidases from Pyrococcus horikoshii form a hetero-subunit peptidasome with enhanced peptide destruction properties. Molecular Microbiology, 2014, 94(4):803-814.
    [22] Zhan DL, Bai AX, Yu L, Han WW, Feng Y. Characterization of the PH1704 protease from Pyrococcus horikoshii OT3 and the critical functions of Tyr120. PLoS One, 2014, 9(9):e103902.
    [23] Wang QY, Yang GY, Liu YL, Feng Y. Discrimination of esterase and peptidase activities of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1 by a single mutation. The Journal of Biological Chemistry, 2006, 281(27):18618-18625.
    [24] Ogasahara K, Lapshina EA, Sakai M, Izu Y, Tsunasawa S, Kato I, Yutani K. Electrostatic stabilization in methionine aminopeptidase from hyperthermophile Pyrococcus furiosus. Biochemistry, 1998, 37(17):5939-5946.
    [25] Bartlam M, Wang GG, Yang HT, Gao RJ, Zhao XD, Xie GQ, Cao SG, Feng Y, Rao ZH. Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1. Structure, 2004, 12(8):1481-1488.
    [26] Uehara R, Takeuchi Y, Tanaka SI, Takano K, Koga Y, Kanaya S. Requirement of Ca2+ ions for the hyperthermostability of Tk-subtilisin from Thermococcus kodakarensis. Biochemistry, 2012, 51(26):5369-5378.
    [27] Singleton MR, Isupov MN, Littlechild JA. X-ray structure of pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis. Structure, 1999, 7(3):237-244.
    [28] Petrova TE, Slutskaya ES, Boyko KM, Sokolova OS, Rakitina TV, Korzhenevskiy DA, Gorbacheva MA, Bezsudnova EY, Popov VO. Structure of the dodecamer of the aminopeptidase APDkam598 from the archaeon Desulfurococcus kamchatkensis. Acta Crystallographica Section F:Structural Biology Communications, 2015, 71(3):277-285.
    [29] Mayr J, Lupas A, Kellermann J, Eckerskorn C, Baumeister W, Peters J. A hyperthermostable protease of the subtilisin family bound to the surface layer of the archaeon Staphylothermus marinus. Current Biology, 1996, 6(6):739-49.
    [30] Dai Z, Fu HT, Zhang YF, Zeng J, Tang B, Tang XF. Insights into the maturation of hyperthermophilic pyrolysin and the roles of its N-terminal propeptide and long C-terminal extension. Applied and Environmental Microbiology, 2012, 78(12):4233-4241.
    [31] Zeng J, Gao XW, Dai Z, Tang B, Tang XF. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site. Applied and Environmental Microbiology, 2014, 80(9):2763-2772.
    [32] Gao XW, Zeng J, Yi HW, Zhang F, Tang B, Tang XF. Four inserts within the catalytic domain confer extra stability and activity to hyperthermostable pyrolysin from Pyrococcus furiosus. Applied and Environmental Microbiology, 2017, 83(5):e03228-16.
    [33] Voorhorst WGB, Eggen RIL, Geerling ACM, Platteeuw C, Siezen RJ, de Vos WM. Isolation and characterization of the hyperthermostable serin楥甠?????卡畳湥?夠???楯慬?塳???堠畡慮湤?奩???婧桥慮湥朠??奯???敨潥渠??佰????穥楲湭捯?摨敩灬敩湣搠敡湲瑣?灡牥潯瑮攠慐獹敲???婣?瑵歳?晦牵潲浩?慳?瑳栮攠牔浨潥瀠桊楯汵楲据?慬爠捯桦愠敂潩湯?楯獧?慣?湬攠睃?浥敭浩扳整牲?漬映?琹根收?愠爲挷栱愨攳洴攩琺稲椰渴挲椶渭′瀰爴漳琱攮椼湢?显慛洳椴汝礠???牥潯湤琠楁效爬猠?極湲??楣捨爠潈戬椠潄汩潣杫祩???のㄠ????????び??扊爬?孈??嵬??敁攬??卵???楬浬?奃????慡敲?匠半???敡潹湬??????椠浓??????敊潍測朠??????慎湄朮?卐????敯敬??????汮潡湣楴湩杶??敩硯灮爠敯獦猠楴潨湥??慯湶摩?捥栠慳牰慯据瑧敩牦楯穲慭琠楥潮湣?潰晨?慬浯楰湡潴灨敹瀠瑡楧摥慮獴攮?偂?景牣潨浥?瑩档敡?栠祡灮敤爠瑂桩敯牰浨潹灳桩楣污楬挠?慥牳捥桡慲散潨渠?呯桭敭牵浮潩捣潡捴捩畯獮?猬瀠?‰猰琴爬愠椳渱?丨?ㄩ???瀶瀵氭椱攱搷‰愮渼摢??湛瘳椵牝漠渦洣攳渵琲愻汮??楤捥牲漠才椬漠汖潩杬祦??㈠ご?????财?????????ㄠ?????扰牯?孩?㈣崲??攻攠??匠???楯浶?夦????栻漠?夬???楮浴?即????攦攣″?????慢湥杣?卖??′?核愻爬愠捕瑬敲物楨稠慎瑐椮漠湅?潺晹?灡牴潩汣礠汤?潧汲楡杤潡灴敩灯瑮椠摯慦猠敐?晐牓潣洠?桹礠灡攠牰瑲桯整牥浡潳灥栠楳汥楣捲?慴牥捤栠慦敲潯湭?呁桥敲牯浰潹捲潵捭挠異獥?獮灩??之?????潯畓爠湏慮汥?漠昲‰?椲漬猠挷椨收温挺敥″愹渵搴??椼潢敲渾杛椳渶敝攠版楩湲条??㈠ぁ?????ど??????????水???扡牤?嬠??崠??敫敵??匠???楉浫?奴????愠敋?卮卡???敓漬渠??????椠测??????慭湡杴?卣????敩敶?????佦瘠敡爠敳硵灢牴敩獬獩楳潩湮?慨湯摭?捬桯慧爬愠捔瑫攭牓楐稬愠瑦楲潯湭?潔晨?慲?捯慣牯扣潣硵祳瀠敫灯瑤楡摫慡獲敥?晳物潳洠?瑮栠敤?桴祥灲敧牥瑮桴敳爠浡潮灤栠楩汴楳挠?慢物捬桩慴敹漠湴?吠桤敥牧浲潡捤潥挠捴畨獥?獡灢??乲?????楲潩獯据椠数湲捯整???椮漠瑂敍捃栠湂潩汯潴来祣??慯湬摯??椬漠挲栰攱洳椬猠琱爳礨??呼???????????ㄠ??で?ㄠ????anaka SI, Sakudo A, Tobiume M, Aranishi M, Hirata A, Takano K, Ikuta K, Kanaya S. Proteolysis of abnormal prion protein with a thermostable protease from Thermococcus kodakarensis KOD1. Applied Microbiology and Biotechnology, 2014, 98(5):2113-2120.
    [38] Tsiroulnikov K, Rezai H, Bonch-Osmolovskaya E, Nedkov P, Gousterova A, Cueff V, Godfroy A, Barbier G, Métro F, Chobert JM, Clayette P, Dormont D, Grosclaude J, Haertlé T. Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and Streptomyces subspecies. Journal of Agricultural and Food Chemistry, 2004, 52(20):6353-6360.
    [39] Kublanov IV, Bidjieva SK, Mardanov AV, Bonch-Osmolovskaya EA. Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 7):1743-1747.
    [40] Catara G, Ruggiero G, La Cara F, Digilio FA, Capasso A, Rossi M. A novel extracellular subtilisin-like protease from the hyperthermophile Aeropyrum pernix K1:biochemical properties, cloning, and expression. Extremophiles, 2003, 7(5):391-399.
    [41] Story SV, Shah C, Jenney FE Jr, Adams MWW. Characterization of a novel zinc-containing, lysine-specific aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology, 2005, 187(6):2077-2083.
    [42] Juhász T, Szeltner Z, Polgár L. Properties of the prolyl oligopeptidase homologue from Pyrococcus furiosus. FEBS Letters, 2006, 580(14):3493-3497.
    [43] Takakura H, Morishita M, Shimojo T, Asada K, Kato I. Thermostable protease. United States:US6358726B1. 2002-03-19.
    [44] Colombo M, Girard E, Franzetti B. Tuned by metals:the TET peptidase activity is controlled by 3 metal binding sites. Scientific Reports, 2016, 6:20876.
    [45] Ishikawa K, Ishida H, Koyama Y, Kawarabayasi Y, Kawahara JI, Matsui E, Matsui I. Acylamino acid-releasing enzyme from the thermophilic archaeon Pyrococcus horikoshii. The Journal of Biological Chemistry, 1998, 273(28):17726-17731.
    [46] Guagliardi A, Cerchia L, Rossi M. An intracellular protease of the crenarchaeon Sulfolobus solfataricus, which has sequence similarity to eukaryotic peptidases of the CD clan. Biochemical Journal, 2002, 368(1):357-363.
    [47] Hu YM, Peng N, Han WY, Mei YX, Chen ZJ, Feng X, Liang YX, She QX. An archaeal protein evolutionarily conserved in prokaryotes is a zinc-dependent metalloprotease. Bioscience Reports, 2012, 32(6):609-618.
    [48] Pulido MA, Saito K, Tanaka SI, Koga Y, Morikawa M, Takano K, Kanaya S. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis:the propeptide is a potent inhibitor of the mature domain but is not required for its folding. Applied and Environmental Microbiology, 2006, 72(6):4154-4162.
    [49] Foophow T, Tanaka S, Koga Y, Takano K, Kanaya S. Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N-and C-terminal propeptides. Protein Engineering Design and Selection, 2010, 23(5):347-355.
    [50] Jia BL, Li ZQ, L
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Xiaowei Gao, Xiao-Feng Tang, Bing Tang. ATP-independent proteases and peptidases from hyperthermophilic archaea. [J]. Acta Microbiologica Sinica, 2017, 57(9): 1373-1382

Copy
Share
Article Metrics
  • Abstract:1177
  • PDF: 1919
  • HTML: 709
  • Cited by: 0
History
  • Received:May 14,2017
  • Revised:June 29,2017
  • Online: August 31,2017
Article QR Code