Progress in the research of gliotoxin
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [48]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Gliotoxin is a small molecular compound with a molecular weight of 326 Da, and its skeleton is a cyclic two-peptide synthesized by the non-ribosomal peptide synthetase GliP, catalyzing the condensation reaction of phenylalanine and serine. Gliotoxin belongs to the family of epidithiodiketopiperazines, is an important fungal secondary metabolite. Many studies have shown that gliotoxin has a variety of effects on plants and animals both in vivo and in vitro. Gliotoxin not only has the function of immune suppression, inducing host cell apoptosis, but also has potential application in biological control. The recent advances in biosynthesis process, mechanisms of gliotoxin on host cells and its potential application value are reviewed in this paper.

    Reference
    [1] Orciuolo E, Stanzani M, Canestraro M, Galimberti S, Carulli G, Lewis R, Petrini M, Komanduri KV. Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils:implications for the pathogenesis of invasive aspergillosis. Journal of Leukocyte Biology, 2007, 82(4):839-848.
    [2] Li WL, Xia J. Recent advances in diketopiperazines biosynthesis. Microbiology China, 2014, 41(1):111-121. (in Chinese)李文利, 夏娟. 二酮哌嗪类化合物生物合成研究进展. 微生物学通报, 2014, 41(1):111-121.
    [3] Li LY, Zhu TJ, Li DH, Gu QQ. Progress in the research of epipolythiodioxopiperazines. Chinese Journal of Antibiotics, 2013, 38(3):161-174. (in Chinese)李莉媛, 朱天骄, 李德海, 顾谦群. 多硫代二酮哌嗪类化合物的研究进展. 中国抗生素杂志, 2013, 38(3):161-174.
    [4] Reece KM, Richardson ED, Cook KM, Campbell TJ, Pisle ST, Holly AJ, Venzon DJ, Liewehr DJ, Chau CH, Price DK, Figg WD. Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor activity by disrupting the HIF-1α/p300 complex in a preclinical model of prostate cancer. Molecular Cancer, 2014, 13:91.
    [5] Scharf DH, Brakhage AA, Mukherjee PK. Gliotoxin——bane or boon? Environmental Microbiology, 2016, 18(4):1096-1109.
    [6] Lewis RE, Wiederhold NP, Lionakis MS, Prince RA, Kontoyiannis DP. Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients at a tertiary-care cancer center. Journal of Clinical Microbiology, 2005, 43(12):6120-6122.
    [7] Schrettl M, Carberry S, Kavanagh K, Haas H, Jones GW, O'Brien J, Nolan A, Stephens J, Fenelon O, Doyle S. Self-protection against gliotoxin——a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathogens, 2010, 6(6):e1000952.
    [8] Chen JJ, Yang M, Zhang LR, Zheng ZH, Song SY. Study on the interaction of Gliotoxin with BSA. Microbiology, 2009, 36(8):1227-1231. (in Chinese)陈俊杰, 杨梅, 张连茹, 郑忠辉, 宋思扬. 胶毒素与BSA的相互作用. 微生物学通报, 2009, 36(8):1227-1231.
    [9] Kwon-Chung KJ, Sugui JA. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Medical Mycology, 2009, 47(Suppl 1):S97-S103.
    [10] Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang JQ, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latgé JP, Li WX, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O'Neil S, Paulsen I, Peñalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Córdoba S, Rodríguez-Peña JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sánchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438(7071):1151-1156.
    [11] Gardiner DM, Howlett BJ. Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiology Letters, 2005, 248(2):241-248.
    [12] Chang SL, Chiang YM, Yeh HH, Wu TK, Wang CCC. Reconstitution of the early steps of gliotoxin biosynthesis in Aspergillus nidulans reveals the role of the monooxygenase GliC. Bioorganic & Medicinal Chemistry Letters, 2013, 23(7):2155-2157.
    [13] Wang DN, Toyotome T, Muraosa Y, Watanabe A, Wuren T, Bunsupa S, Aoyagi K, Yamazaki M, Takino M, Kamei K. GliA in Aspergillus fumigatus is required for its tolerance to gliotoxin and affects the amount of extracellular and intracellular gliotoxin. Medical Mycology, 2014, 52(5):506-518.
    [14] Scharf DH, Habel A, Heinekamp T, Brakhage AA, Hertweck C. Opposed effects of enzymatic gliotoxin N-and S-methylations. Journal of the American Chemical Society, 2014, 136(33):11674-11679.
    [15] Dolan SK, O'Keeffe G, Jones GW, Doyle S. Resistance is not futile:gliotoxin biosynthesis, functionality and utility. Trends in Microbiology, 2015, 23(7):419-428.
    [16] Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP. GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infection and Immunity, 2006, 74(12):6761-6768.
    [17] Smith TD, Calvo AM. The mtfA transcription factor gene controls morphogenesis, gliotoxin production, and virulence in the opportunistic human pathogen Aspergillus fumigatus. Eukaryotic Cell, 2014, 13(6):766-775.
    [18] Schoberle TJ, Nguyen-Coleman CK, Herold J, Yang A, Weirauch M, Hughes TR, McMurray JS, May GS. A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus. PLoS Genetics, 2014, 10(5):e1004336.
    [19] Shin KS, Kim YH, Yu JH. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2015, 463(3):428-433.
    [20] Watanabe A, Kamei K, Sekine T, Higurashi H, Ochiai E, Hashimoto Y, Nishimura K. Cytotoxic substances from Aspergillus fumigatus in oxygenated or poorly oxygenated environment. Mycopathologia, 2004, 158(1):1-7.
    [21] Brakhage AA. Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 2013, 11(1):21-32.
    [22] McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, Chen D, Loss O, Cairns T, Goldman G, Armstrong-James D, Haynes K, Haas H, Schrettl M, May G, Nierman WC, Bignell E. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathogens, 2008, 4(9):e1000154.
    [23] Bertuzzi M, Schrettl M, Alcazar-Fuoli L, Cairns TC, Muñoz A, Walker LA, Herbst S, Safari M, Cheverton AM, Chen D, Liu H, Saijo S, Fedorova ND, Armstrong-James D, Munro CA, Read ND, Filler SG, Espeso EA, Nierman WC, Haas H, Bignell EM. The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathogens, 2014, 10(10):e1004413.
    [24] Svahn KS, Göransson U, Chryssanthou E, Olsen B, Sjölin J, Strömstedt AA. Induction of gliotoxin secretion in Aspergillus fumigatus by bacteria-associated molecules. PLoS One, 2014, 9(4):e93685.
    [25] Cramer RA Jr, Gamcsik MP, Brooking RM, Najvar LK, Kirkpatrick WR, Patterson TF, Balibar CJ, Graybill JR, Perfect JR, Abraham SN, Steinbach WJ. Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryotic Cell, 2006, 5(6):972-980.
    [26] Scharf DH, Heinekamp T, Brakhage AA. Human and plant fungal pathogens:the role of secondary metabolites. PLoS Pathogens, 2014, 10(1):e1003859.
    [27] DeWitte-Orr SJ, Bols NC. Gliotoxin-induced cytotoxicity in three salmonid cell lines:cell death by apoptosis and necrosis. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2005, 141(2):157-167.
    [28] Stanzani M, Orciuolo E, Lewis R, Kontoyiannis DP, Martins SLR, St John LS, Komanduri KV. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood, 2005, 105(6):2258-2265.
    [29] Nguyen VT, Lee JS, Qian ZJ, Li YX, Kim KN, Heo SJ, Jeon YJ, Park WS, Choi IW, Je JY, Jung WK. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Marine Drugs, 2014, 12(1):69-87.
    [30] Geissler A, Haun F, Frank DO, Wieland K, Simon MM, Idzko M, Davis RJ, Maurer U, Borner C. Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death and Differentiation, 2013, 20(10):1317-1329.
    [31] Bernardo PH, Brasch N, Chai CLL, Waring P. A novel redox mechanism for the glutathione-dependent reversible uptake of a fungal toxin in cells. Journal of Biological Chemistry, 2003, 278(47):46549-46555.
    [32] Kroll M, Arenzana-Seisdedos F, Bachelerie F, Thomas D, Friguet B, Conconi M. The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chemistry & Biology, 1999, 6(10):689-698.
    [33] Schlam D, Canton J, Carreño M, Kopinski H, Freeman SA, Grinstein S, Fairn GD. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3,4,5-trisphosphate homeostasis. mBio, 2016, 7(2):e02242-15.
    [34] Jia XD, Chen FY, Pan WH, Yu RT, Tian SG, Han GG, Fang HQ, Wang S, Zhao JY, Li XP, Zheng DY, Tao S, Liao WQ, Han XL, Han L. Gliotoxin promotes Aspergillus fumigatus internalization into type Ⅱ human pneumocyte A549 cells by inducing host phospholipase D activation. Microbes and Infection, 2014, 16(6):491-501.
    [35] Choi HS, Shim JS, Kim JA, Kang SW, Kwon HJ. Discovery of gliotoxin as a new small molecule targeting thioredoxin redox system. Biochemical and Biophysical Research Communications, 2007, 359(3):523-528.
    [36] Ben-Ami R, Lewis RE, Leventakos K, Kontoyiannis DP. Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood, 2009, 114(26):5393-5399.
    [37] Lewis RE, Wiederhold NP, Chi JD, Han XY, Komanduri KV, Kontoyiannis DP, Prince RA. Detection of gliotoxin in experimental and human aspergillosis. Infection and Immunity, 2005, 73(1):635-637.
    [38] Domingo MP, Colmenarejo C, Martínez-Lostao L, Müllbacher A, Jarne C, Revillo MJ, Delgado P, Roc L, Meis JF, Rezusta A, Pardo J, Gálvez EM. Bis(methyl)gliotoxin proves to be a more stable and reliable marker for invasive aspergillosis than gliotoxin and suitable for use in diagnosis. Diagnostic Microbiology and Infectious Disease, 2012, 73(1):57-64.
    [39] Kupfahl C, Heinekamp T, Geginat G, Ruppert T, Härtl A, Hof H, Brakhage AA. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Molecular Microbiology, 2006, 62(1):292-302.
    [40] Spikes S, Xu R, Nguyen CK, Chamilos G, Kontoyiannis DP, Jacobson RH, Ejzykowicz DE, Chiang LY, Filler SG, May GS. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. Journal of Infectious Diseases, 2008, 197(3):479-486.
    [41] Chen JX, Wang CL, Lan WJ, Huang CY, Lin MM, Wang ZY, Liang WL, Iwamoto A, Yang XL, Liu HL. Gliotoxin inhibits proliferation and induces apoptosis in colorectal cancer cells. Marine Drugs, 2015, 13(10):6259-6273.
    [42] Hubmann R, Hilgarth M, Schnabl S, Ponath E, Reiter M, Demirtas D, Sieghart W, Valent P, Zielinski C, Jäger U, Shehata M. Gliotoxin is a potent NOTCH2 transactivation inhibitor and efficiently induces apoptosis in chronic lymphocytic leukaemia (CLL) cells. British Journal of Haematology, 2013, 160(5):618-629.
    [43] Ni HY, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL, Saeed S, Barton K, Alkan S. Analysis of expression of nuclear factor κB (NF-κB) in multiple myeloma:downregulation of NF-κB induces apoptosis. British Journal of Haematology, 2001, 115(2):279-286.
    [44] Hatabu T, Hagiwara M, Taguchi N, Kiyozawa M, Suzuki M, Kano S, Sato K. Plasmodium falciparum:the fungal metabolite gliotoxin inhibits proteasome proteolytic activity and exerts a plasmodicidal effect on P. falciparum. Experimental Parasitology, 2006, 112(3):179-183.
    [45] Kreidenweiss A, Kremsner PG, Mordmüller B. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malaria Journal, 2008, 7:187.
    [46] Cerqueira LB, de Francisco TMG, Gasparetto JC, Campos FR, Pontarolo R. Development and validation of an HPLC-MS/MS method for the early diagnosis of aspergillosis. PLoS ONE, 2014, 9(4):e92851.
    [47] Howell CR. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology, 2006, 96(2):178-180.
    [48] Thrasher JD. Fungi, bacteria, nano-particulates, mycotoxins and human health in water-damaged indoor environments. Journal of Community and Public Health Nursing, 2016, 2:115.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Fangyan Chen, Changjian Zhang, Li Han. Progress in the research of gliotoxin. [J]. Acta Microbiologica Sinica, 2017, 57(10): 1443-1451

Copy
Share
Article Metrics
  • Abstract:863
  • PDF: 1940
  • HTML: 963
  • Cited by: 0
History
  • Received:November 22,2016
  • Revised:February 24,2017
  • Online: September 29,2017
Article QR Code