Research progress of CRISPR-Cas system in bacteria
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [59]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The discovery of CRISPR-Cas system breaks certain theory which adaptive immunity had been long time considered as unique characteristics of eukaryotic organism. CRISPR-Cas, a new adaptive immunity system widespread in bacteria and archaea, protects the host from invasion of exogenous nucleic acids by capturing and using the Cas protein and crRNA to resisting it when invading again. In recent years, CRISPR-Cas system has aroused extensive attention and exploration. From microbial perspective, this article introduces a brief overview on classification, mechanism and application which have achieved significant breakthrough to provide valuable reference for further research on CRISPR-Cas system and its application.

    Reference
    [1] Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Research, 2013, 41(8):4360-4377.
    [2] Heler R, Marraffini LA, Bikard D. Adapting to new threats:the generation of memory by CRISPR-Cas immune systems. Molecular Microbiology, 2014, 93(1):1-9.
    [3] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12):5429-5433.
    [4] Jansen R, Van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6):1565-1575.
    [5] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819):1709-1712.
    [6] Godde JS, Bickerton A. The repetitive DNA elements called CRISPRS and their associated genes:evidence of horizontal transfer among prokaryotes. Journal of Molecular Evolution, 2006, 62(6):718-729.
    [7] Grissa I, Vergnaud G, Pourcel C. CRISPRFinder:A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 2007, 35(S2):W52-W57.
    [8] Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6):467-477.
    [9] Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems//Lundgren M, Charpentier E, Fineran P. Methods in Molecular Biology. New York:Humana Press, 2015, 1311:47-75.
    [10] Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell, 2015, 60(3):385-397.
    [11] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096):816-821.
    [12] Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5):935-949.
    [13] Jinek M, Jiang FG, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou KH, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Structures of cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176):1247997.
    [14] Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and cas9 families of type Ⅱ CRISPR-Cas immunity systems. RNA Biology, 2013, 10(5):726-737.
    [15] Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type Ⅱ CRISPR-Cas systems. Nucleic Acids Research, 2014, 42(10):6091-6105.
    [16] Arslan Z, Wurm R, Brener O, Ellinger P, Nagel-Steger L, Oesterhelt F, Schmitt L, Willbold D, Wagner R, Gohlke H, Smits SHJ, Pul Ü. Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Research, 2013, 41(12):6347-6359.
    [17] Zhang J, Kasciukovic T, White MF. The CRISPR associated protein cas4 is a 5' to 3' DNA exonuclease with an iron-sulfur cluster. PLoS One, 2012, 7(10):e47232.
    [18] Koonin EV, Makarova KS. CRISPR-Cas:evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biology, 2013, 10(5):679-686.
    [19] Singh A, Chakraborty D, Maiti S. CRISPR/Cas9:a historical and chemical biology perspective of targeted genome engineering. Chemical Society Reviews, 2016, 45(24):6666-6684.
    [20] Anantharaman V, Iyer LM, Aravind L. Presence of a classical RRM-fold palm domain in Thg1-Type 3'→5' nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains. Biology Direct, 2010, 5(1):43.
    [21] Xing Z, Ye KQ. Crystal structure of Cmr2 suggests a nucleotide cyclase related enzyme in type Ⅲ CRISPR-Cas systems. FEBS Letter, 2012, 586(6):939-945.
    [22] Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research, 2002, 30(2):482-496.
    [23] Makarova KS, Wolf YI, Koonin EV. The basic building blocks and evolution of CRISPR-Cas systems. Biochemical Society Transactions, 2013, 41(6):1392-1400.
    [24] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909):1843-1845.
    [25] Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CVC, Graveley BR, Terns RM, Terns MP. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Molecular Cell, 2012, 45(3):292-302.
    [26] Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 2011, 139(5):945-956.
    [27] Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct, 2011, 6:38.
    [28] White MF. Structure, function and evolution of the XPD family of iron-sulfur-containing 5'→3' DNA helicases. Biochemical Society Transactions, 2009, 37(3):547-551.
    [29] Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3):759-771.
    [30] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6):1262-1278.
    [31] Liu L, Li XY, Wang JY, Wang M, Chen P, Yin ML, Li JZ, Sheng G, Wang YL. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell, 2017, 168(1/2):121-134.e112.
    [32] Domingo E, Holland JJ. RNA virus mutations and fitness for survival. Annual Review of Microbiology, 1997, 51:151-178.
    [33] Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016, 353(6299):aad5147.
    [34] Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(3):733-740.
    [35] Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems:acquisition of new information. Virology, 2012, 434(2):202-209.
    [36] Wei YZ, Terns RM, Terns MP. Cas9 function and host genome sampling in type Ⅱ-a CRISPR-Cas adaptation. Genes & Development, 2015, 29(4):356-361.
    [37] Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature, 2015, 519(7542):199-202.
    [38] Nuñez JK, Lee ASY, Engelman A, Doudna JA. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature, 2015, 519(7542):193-198.
    [39] Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiology Reviews, 2015, 39(3):428-411.
    [40] Staals RHJ, Zhu YF, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, Sakamoto K, Suzuki T, Dohmae N, Yokoyama S, Schaap PJ, Urlaub H, Heck AJR, Nogales E, Doudna JA, Shinkai A, van der Oost J. RNA targeting by the type iii-a CRISPR-Cas Csm complex of Thermus thermophilus. Molecular Cell, 2014, 56(4):518-530.
    [41] Nam KH, Haitjema C, Liu XQ, Ding F, Wang HW, Delisa MP, Ke A. Cas5d protein processes Pre-crRNA and assembles into a Cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure, 2012, 20(9):1574-1584.
    [42] Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011, 471(7340):602-607.
    [43] Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016, 532(7600):517-521.
    [44] Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. Directional R-Loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Reports, 2015, 10(9):1534-1543.
    [45] Van Der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews Microbiology, 2014, 12(7):479-492.
    [46] Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, Guegler CK, Wiedenheft B, Doudna JA, Greene EC. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell, 2015, 163(4):854-865.
    [47] Samai P, Pyenson N, Jiang WY, Goldberg GW, Hatoum-Aslan A, Marraffini LA. Co-transcriptional DNA and RNA cleavage during type Ⅲ CRISPR-Cas immunity. Cell, 2015, 161(5):1164-1174.
    [48] Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease cas9. Nature, 2014, 507(7490):62-67.
    [49] Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299):aaf5573.
    [50] Zeng H, Wen SS, Xu W, He ZR, Zhai GF, Liu YK, Deng ZX, Sun YH. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Applied Microbiology and Biotechnology, 2015, 99(24):10575-10585.
    [51] Bassalo MC, Garst AD, Halweg-Edwards AL, Grau WC, Domaille DW, Mutalik VK, Arkin AP, Gill RT. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synthetic Biology, 2016, 5(7):561-568.
    [52] Pyne ME, Bruder MR, Moo-Young M, Chung DA, Chou CP. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Scientific Reports, 2016, 6:25666.
    [53] Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synthetic Biology, 2016, 5(5):375-385.
    [54] Rath D, Amlinger L, Hoekzema M, Devulapally PR, Lundgren M. Efficient programmable gene silencing by Cascade. Nucleic Acids Research, 2014, 43(1):237-246.
    [55] Bikard D, Jiang WY, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 2013, 41(15):7429-7437.
    [56] Shariat N, Timme RE, Pettengill JB, Barrangou R, Dudley EG. Characterization and evolution of salmonella CRISPR-Cas systems. Microbiology, 2015, 161(2):374-386.
    [57] Barrangou R, Dudley EG. CRISPR-based typing and next-generation tracking technologies. Annual Review of Food Science and Technology, 2016, 7:395-411.
    [58] Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 2013, 5(1):e00928-13.
    [59] Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, Degennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nature Biotechnology, 2017, 35(1):31-34.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Li Hu, Shi Chen. Research progress of CRISPR-Cas system in bacteria. [J]. Acta Microbiologica Sinica, 2017, 57(11): 1643-1652

Copy
Share
Article Metrics
  • Abstract:2847
  • PDF: 4850
  • HTML: 1229
  • Cited by: 0
History
  • Received:April 04,2017
  • Revised:June 01,2017
  • Online: October 30,2017
Article QR Code