Advances in exocyst complex in filamentous fungi
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Exocyst is an octameric protein complex that plays a crucial role in the docking and tethering of post-Golgi secretory vesicles to the plasma membrane in eukaryotic cell. The subunit of exocyst complex directly interacts with small GTPases and provides precise spatiotemporal regulation in polarized exocytosis. The growth of filamentous fungi is accomplished by polarized growth in hypha tip, and it possess strong ability of protein secretion. Filamentous fungi are ideal experimental system in study exocyst complex. Exocyst affects morphogenesis and pathogenesis in filamentous fungi. This review summarized current research on exocyst complex in filamentous fungi, including its composition, localization of subunit, function and regulation.

    Reference
    [1] Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ. Approaches to functional genomics in filamentous fungi. Cell Research, 2006, 16(1):31-44.
    [2] Li L, Chin LS. The molecular machinery of synaptic vesicle exocytosis. Cellular and Molecular Life Sciences, 2003, 60(5):942-960.
    [3] Whyte JR, Munro S. Vesicle tethering complexes in membrane traffic. Journal of Cell Science, 2002, 115(Pt 13):2627-2637.
    [4] Novick P, Schekman R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae.Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(4):1858-1862.
    [5] Novick P, Ferro S, Schekman R. Order of events in the yeast secretory pathway. Cell, 1981, 25(2):461-469.
    [6] Bowser R, Müller H, Govindan B, Novick P. Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. The Journal of Cell Biology, 1992, 118(5):1041-1056.
    [7] Terbush DR, Novick P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae.The Journal of Cell Biology, 1995, 130(2):299-312.
    [8] TerBush DR, Maurice T, Roth D, Novick P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae.The EMBO Journal, 1996, 15(23):6483-6494.
    [9] Luo GZ, Zhang J, Luca FC, Guo W. Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. The Journal of Cell Biology, 2013, 202(1):97-111.
    [10] Heider MR, Munson M. Exorcising the exocyst complex. Traffic, 2012, 13(7):898-907.
    [11] Riquelme M, Bredeweg EL, Callejas-Negrete O, Roberson RW, Ludwig S, Beltran-Aguilar A, Seiler S, Novick P, Freitag M. The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Molecular Biology of the Cell, 2014, 25(8):1312-1326.
    [12] Boyd C, Hughes T, Pypaert M, Novick P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. The Journal of Cell Biology, 2004, 167(5):889-901.
    [13] Finger FP, Hughes TE, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell, 1998, 92(4):559-571.
    [14] Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae.Nature Communications, 2013, 4:1996.
    [15] Chen SM, Chen XF, Yang CD, Wang ZH, Zhou J. Bioinformatics analysis of exocyst complex and the subcellular localization of MoSec15 in Magnaporthe oryzae.Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2014, 43(3):282-288. (in Chinese)陈四妙, 陈晓峰, 杨成东, 王宗华, 周洁. 稻瘟病菌分泌复合物的生物信息学分析及MoSec15定位研究. 福建农林大学学报(自然科学版), 2014, 43(3):282-288.
    [16] Virag A, Harris SD. The Spitzenkörper:a molecular perspective. Mycological Research, 2006, 110(Pt 1):4-13.
    [17] Köhli M, Galati V, Boudier K, Roberson RW, Philippsen P. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. Journal of Cell Science, 2008, 121(Pt23):3878-3889.
    [18] Jones LA, Sudbery PE. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryotic Cell, 2010, 9(10):1455-1465.
    [19] Wu H, Rossi G, Brennwald P. The ghost in the machine:small GTPases as spatial regulators of exocytosis. Trends in Cell Biology, 2008, 18(9):397-404.
    [20] Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou XW, Espeso EA, Peñalva MA, Osmani SA, Oakley BR. The tip growth apparatus of Aspergillus nidulans.Molecular Biology of the Cell, 2008, 19(4):1439-1449.
    [21] Li CR, Lee RT, Wang YM, Zheng XD, Wang Y. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. Journal of Cell Science, 2007, 120(Pt 11):1898-1907.
    [22] Kwon MJ, Arentshorst M, Fiedler M, de Groen FL, Punt PJ, Meyer V, Ram AF. Molecular genetic analysis of vesicular transport in Aspergillus niger reveals partial conservation of the molecular mechanism of exocytosis in fungi. Microbiology, 2014, 160(Pt 2):316-329.
    [23] Chavez-Dozal AA, Bernardo SM, Rane HS, Herrera G, Kulkarny V, Wagener J, Cunningham I, Brand AC, Gow NA, Lee SA. The Candida albicans exocyst subunit Sec6 contributes to cell wall integrity and is a determinant of hyphal branching. Eukaryotic Cell, 2015, 14(7):769-771.
    [24] Chavez-Dozal AA, Bernardo SM, Rane HS, Lee SA. Functional analysis of the exocyst subunit Sec15 in Candida albicans.Eukaryotic Cell, 2015, 14(12):1228-1239.
    [25] Panepinto J, Komperda K, Frases S, Park Y-D, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans.Molecular Microbiology, 2009, 71(5):1165-1176.
    [26] Liu TL, Song TQ, Zhang X, Yuan HB, Su LM, Li WL, Xu J, Liu SH, Chen LL, Chen TZ, Zhang MX, Gu LC, Zhang BL, Dou DL. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature Communications, 2014, 5:4686.
    [27] Wu B, Guo W. The exocyst at a glance. Journal of Cell Science, 2015, 128(16):2957-2964.
    [28] Dubuke ML, Maniatis S, Shaffer SA, Munson M. The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes. Journal of Biological Chemistry, 2015, 290(47):28245-28256.
    [29] Zhang ZQ, Qin GZ, Li BQ, Tian SP. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Molecular Plant-Microbe Interactions, 2014, 27(6):590-600.
    [30] Powers-Fletcher MV, Feng XZ, Krishnan K, Askew DS. Deletion of the sec4 homolog srgA from Aspergillus fumigatus is associated with an impaired stress response, attenuated virulence and phenotypic heterogeneity. PLoS ONE, 2013, 8(6):e66741.
    [31] Yoneda A, Doering TL. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Molecular Biology of the Cell, 2006, 17(12):5131-5140.
    [32] Caballero-Lima D, Sudbery PE. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Molecular Biology of the Cell, 2014, 25(7):1097-1110.
    Cited by
Get Citation

Xiaohui Hu, Kun Wang, Tingheng Zhu. Advances in exocyst complex in filamentous fungi. [J]. Acta Microbiologica Sinica, 2018, 58(3): 372-379

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 26,2017
  • Revised:October 18,2017
  • Online: February 12,2018
Article QR Code