Mechanisms of extracellular electron transfer in the biogeochemical manganese cycle
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [69]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    Microorganisms are important driver for the circulation of biogeochemical elements and play a vital role in the redox of metal elements possessing variable valence such as manganese. In recent years, the discovery and wide distribution of Mn(Ⅲ) in certain environment enrich our knowledge of natural manganese cycle. Some reports showed that geochemical cycling of manganese, especially dissimilatory manganese reduction, was closely related to microbial extracellular electron transfer, and dissimilatory manganese reduction involves five mechanisms of extracellular electron transfer. In this review, we discuss geochemical cycling and significance of manganese; microbial diversity of manganese cycle involving three aspects:mechanisms of microbial extracellular electron transfer, manganese oxidation mediated by microorganisms and manganese reduction mediated by microorganisms; The environmental significance of microbial geochemical manganese cycle. The research on the process of manganese cycle not only enriches related theories, but also stimulates the development of application including biological manganese removal, in-situ remediation of contaminants and bioleaching.

    Reference
    [1] Post JE. Manganese oxide minerals:crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3447-3454.
    [2] Grundmeier A, Dau H. Structural models of the manganese complex of photosystem Ⅱ and mechanistic implications. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012, 1817(1):88-105.
    [3] Sparrow LA, Uren NC. Manganese oxidation and reduction in soils:effects of temperature, water potential, pH and their interactions. Soil Research, 2014, 52(5):483-494.
    [4] Soldatova AV, Butterfield C, Oyerinde OF, Tebo BM, Spiro TG. Multicopper oxidase involvement in both Mn(Ⅱ) and Mn(Ⅲ) oxidation during bacterial formation of MnO2. JBIC Journal of Biological Inorganic Chemistry, 2012, 17(8):1151-1158.
    [5] Trouwborst RE, Clement BG, Tebo BM, Glazer BT, Luther Ⅲ GW. Soluble Mn(Ⅲ) in suboxic zones. Science, 2006, 313(5795):1955-1957.
    [6] Madison AS, Tebo BM, Mucci A, Sundby B, Luther Ⅲ GW. Abundant porewater Mn(Ⅲ) is a major component of the sedimentary redox system. Science, 2013, 341(6148):875-878.
    [7] Oldham VE, Mucci A, Tebo BM, Luther Ⅲ GW. Soluble Mn(Ⅲ)-L complexes are abundant in oxygenated waters and stabilized by humic ligands. Geochimica et Cosmochimica Acta, 2017, 199:238-246.
    [8] Zhang Z, Li L, Liu F. Molecular mechanism of bacterial manganese(Ⅱ) oxidation-A review. Acta Microbiologica Sinica, 2011, 51(2):170-177. (in Chinese)张震, 李林, 刘凡. 细菌氧化锰的分子机制. 微生物学报, 2011, 51(2):170-177.
    [9] Ma C, Zhou SG, Zhuang L, Wu CY. Electron transfer mechanism of extracellular respiration:a review. Acta Ecologica Sinica, 2011, 31(7):2008-2018. (in Chinese)马晨, 周顺桂, 庄莉, 武春媛. 微生物胞外呼吸电子传递机制研究进展. 生态学报, 2011, 31(7):2008-2018.
    [10] Methé BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM. Genome of Geobacter sulfurreducens:Metal reduction in subsurface environments. Science, 2003, 302(5652):1967-1969.
    [11] Lovley DR. Bug juice:harvesting electricity with microorganisms. Nature Reviews Microbiology, 2006, 4(7):497-508.
    [12] Santos TC, Silva MA, Morgado L, Dantas JM, Salgueiro CA. Diving into the redox properties of Geobacter sulfurreducens cytochromes:a model for extracellular electron transfer. Dalton Transactions, 2015, 44(20):9335-9344.
    [13] Ueki T, DiDonato LN, Lovley DR. Toward establishing minimum requirements for extracellular electron transfer in Geobacter sulfurreducens. FEMS Microbiology Letters, 2017, 364(9), doi:10.1093/femsle/fnx093.
    [14] Mehta T, Coppi MV, Childers SE, Lovley DR. Outer membrane c-type cytochromes required for Fe(Ⅲ) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Applied and Environmental Microbiology, 2005, 71(12):8634-8641.
    [15] Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan MA, Perpetua LA, Giloteaux L, Liu A, Holmes DE. Proteins involved in electron transfer to Fe(Ⅲ) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology, 2013, 159(3):515-535.
    [16] Childers SE, Ciufo S, Lovley DR. Geobacter metallireducens accesses insoluble Fe(Ⅲ) oxide by chemotaxis. Nature, 2002, 416(6882):767-769.
    [17] Michelson K, Sanford RA, Valocchi AJ, Werth CJ. Nanowires of Geobacter sulfurreducens require redox cofactors to reduce metals in pore spaces too small for cell passage. Environmental Science & Technology, 2017, 51(20):11660-11668.
    [18] Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435(7045):1098-1101.
    [19] Malvankar NS, Tuominen MT, Lovley DR. Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energy & Environmental Science, 2012, 5(9):8651-8659.
    [20] Malvankar NS, Vargas M, Nevin K, Tremblay PL, Evans-Lutterodt K, Nykypanchuk D, Martz E, Tuominen MT, Lovley DR. Structural basis for metallic-like conductivity in microbial nanowires. mBio, 2015, 6(2):e00084-15.
    [21] Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Nevin KP, Lovley DR. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio, 2013, 4(2):e00105-13.
    [22] Tan Y, Adhikari RY, Malvankar NS, Ward JE, Woodard TL, Nevin KP, Lovley DR. Expressing the Geobacter metallireducens pilA in Geobacter sulfurreducens yields pili with exceptional conductivity. mBio, 2017, 8(1):e02203-16.
    [23] Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35):12883-12888.
    [24] Sure S, Ackland ML, Torriero AAJ, Adholeya A, Kochar M. Microbial nanowires:an electrifying tale. Microbiology, 2016, 162(12):2017-2028.
    [25] Leang C, Qian XL, Mester T, Lovley DR. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Applied and Environmental Microbiology, 2010, 76(12):4080-4084.
    [26] Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 2010, 330(6009):1413-1415.
    [27] Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR. A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 2014, 7(1):408-415.
    [28] Rotaru AE, Shrestha PM, Liu FH, Markovaite B, Chen SS, Nevin KP, Lovley DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 2014, 80(15):4599-4605.
    [29] Zheng SL, Zhang HX, Li Y, Zhang H, Wang OM, Zhang J, Liu FH. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron(Ⅲ)-reducing enrichment culture. Frontiers in Microbiology, 2015, 6:941.
    [30] Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environmental Microbiology, 2015, 17(3):648-655.
    [31] Xiao LL, Liu FH, Liu JC, Li JJ, Zhang YC, Yu JF, Wang OM. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour-long timescale in wetland soil. Environmental Science:Nano, 2018, 5(2):436-445.
    [32] You YS, Zheng SL, Zang HM, Liu F, Liu FH, Liu J. Stimulatory effect of magnetite on the syntrophic metabolism of Geobacter co-cultures:influences of surface coating. Geochimica et Cosmochimica Acta, 2018, doi:10.1016/j.gca. 2018.02.009.
    [33] Bücking C, Popp F, Kerzenmacher S, Gescher J. Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiology Letters, 2010, 306(2):144-151.
    [34] Okamoto A, Hashimoto K, Nealson KH, Nakamura R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19):7856-7861.
    [35] Okamoto A, Saito K, Inoue K, Nealson KH, Hashimoto K, Nakamura R. Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy & Environmental Science, 2014, 7(4):1357-1361.
    [36] Ma JL, Ma C, Tang J, Zhou SG, Zhuang L. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer. Progress in Chemistry, 2015, 27(12):1833-1840. (in Chinese)马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用. 化学进展, 2015, 27(12):1833-1840.
    [37] von Canstein H, Ogawa J, Shimizu S, Lloyd JR. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 2008, 74(3):615-623.
    [38] Kotloski NJ, Gralnick JA. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio, 2013, 4(1):e00553-12.
    [39] Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella Secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10):3968-3973.
    [40] Zhang HQ, Li Y, Wang X, Lu AH, Ding HR, Zeng CP, Wang X, Wu XL, Nie Y, Wang CQ. Aerobic and anaerobic reduction of birnessite by a novel Dietzia strain. Geochemical Transactions, 2015, 16:11.
    [41] Xie ZF, Zheng P, Zhang JQ, Cai J. The electricigens and their physiological and biochemical characteristics. Bulletin of Science and Technology, 2013, 27(3):32-39. (in Chinese)谢作甫, 郑平, 张吉强, 蔡靖. 产电微生物及其生理生化特性. 科技通报, 2013, 27(3):32-39.
    [42] Xu W, Hu P, Li YH, Li XM, Zhou SG. Mechanisms of microbial Fe(Ⅲ) respiration:A review. Chinese Journal of Ecology, 2008, 27(6):1037-1042. (in Chinese)许伟, 胡佩, 李艳红, 李晓敏, 周顺桂. 微生物铁呼吸机制研究进展. 生态学杂志, 2008, 27(6):1037-1042.
    [43] Kouzuma A, Hashimoto K, Watanabe K. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiology Letters, 2012, 326(1):91-98.
    [44] Duckworth OW, Sposito G. Siderophore-promoted dissolution of synthetic and biogenic layer-type Mn oxides. Chemical Geology, 2007, 242(3/4):497-508.
    [45] Harris HW, El-Naggar MY, Bretschger O, Ward MJ, Romine MF, Obraztsova AY, Nealson KH. Electrokinesis is a microbial behavior that requires extracellular electron transport. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1):326-331.
    [46] Harris HW, El-Naggar MY, Nealson KH. Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors. Biochemical Society Transactions, 2012, 40(6):1167-1177.
    [47] Yang H, Zhong J, Ji J, Zhang J. Advance in microbiological studies of Mn(Ⅱ)-oxidizing bacteria. Chinese Journal of Applied & Environmental Biology, 2008, 14(1):143-146. (in Chinese)杨宏, 钟洁, 纪娟, 张杰. Mn(Ⅱ)氧化细菌的微生物学研究进展. 应用与环境生物学报, 2008, 14(1):143-146.
    [48] Webb SM, Dick GJ, Bargar JR, Tebo BM. Evidence for the presence of Mn(Ⅲ) intermediates in the bacterial oxidation of Mn(Ⅱ). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(15):5558-5563.
    [49] Soldatova AV, Romano CA, Tao LZ, Stich TA, Casey WH, Britt RD, Tebo BM, Spiro TG. Mn(Ⅱ) oxidation by the multicopper oxidase complex Mnx:A coordinated two-stage Mn(Ⅱ)/(Ⅲ) and Mn(Ⅲ)/(IV) mechanism. Journal of the American Chemical Society, 2017, 139(33):11381-11391.
    [50] Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM. Formation of manganese oxides by bacterially generated superoxide. Nature Geoscience, 2011, 4(2):95-98.
    [51] Andeer PF, Learman DR, McIlvin M, Dunn JA, Hansel CM. Extracellular haem peroxidases mediate Mn(Ⅱ) oxidation in a marine Roseobacter bacterium via superoxide production. Environmental Microbiology, 2015, 17(10):3925-3936.
    [52] Wuttig K, Heller MI, Croot PL. Pathways of superoxide (O2-) decay in the Eastern Tropical North Atlantic. Environmental Science & Technology, 2013, 47(18):10249-10256.
    [53] Hansard SP, Easter HD, Voelker BM. Rapid Reaction of nanomolar Mn(Ⅱ) with superoxide radical in seawater and simulated freshwater. Environmental Science & Technology, 2011, 45(7):2811-2817.
    [54] Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(Ⅲ) and Mn(IV) reduction. Advances in Microbial Physiology, 2004, 49:219-286.
    [55] Lovley DR, Phillips EJP. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 1988, 54(6):1472-1480.
    [56] Szeinbaum N, Lin H, Brandes JA, Taillefert M, Glass JB, DiChristina TJ. Microbial manganese(Ⅲ) reduction fuelled by anaerobic acetate oxidation. Environmental Microbiology, 2017, 19(9):3475-3486.
    [57] Canfield DE, Thamdrup B, Hansen JW. The anaerobic degradation of organic matter in Danish coastal sediments:iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 1993, 57(16):3867-3883.
    [58] Beal EJ, House CH, Orphan VJ. Manganese-and iron-dependent marine methane oxidation. Science, 2009, 325(5937):184-187.
    [59] Lovley DR, Phillips EJP, Lonergan DJ. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Applied and Environmental Microbiology, 1989, 55(3):700-706.
    [60] Thamdrup B, Rosselló-Mora R, Amann R. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Applied and Environmental Microbiology, 2000, 66(7):2888-2897.
    [61] Lovley DR. Potential role of dissimilatory iron reduction in the early evolution of microbial respiration[M]//Seckbach J. Origins. Netherlands:Springer, 2004:299-313.
    [62] Lovley DR. Dissimilatory Fe(Ⅲ) and Mn(IV) reduction. Microbiological Reviews, 1991, 55(2):259-287.
    [63] Lovley DR, Phillips EJP. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Applied and Environmental Microbiology, 1994, 60(7):2394-2399.
    [64] Kostka JE, Luther Ⅲ GW, Nealson KH. Chemical and biological reduction of Mn(Ⅲ)-pyrophosphate complexes:potential importance of dissolved Mn(Ⅲ) as an environmental oxidant. Geochimica et Cosmochimica Acta, 1995, 59(5):885-894.
    [65] Szeinbaum N, Burns JL, DiChristina TJ. Electron transport and protein secretion pathways involved in Mn(Ⅲ) reduction by Shewanella oneidensis. Environmental Microbiology Reports, 2014, 6(5):490-500.
    [66] Lin H, Szeinbaum NH, DiChristina TJ, Taillefert M. Microbial Mn(IV) reduction requires an initial one-electron reductive solubilization step. Geochimica et Cosmochimica Acta, 2012, 99:179-192.
    [67] Yuan S, Liu SY, Zheng C, Lin HJ, Liu WL, Zhang XR. Review of manganese removal technology in drinking water. Journal of Taizhou University, 2015, 37(3):52-59. (in Chinese)袁烁, 刘树元, 郑晨, 林宏剑, 刘文莉, 张曦冉. 饮用水中除锰技术的研究进展. 台州学院学报, 2015, 37(3):52-59.
    [68] Gao J, Hedman C, Liu C, Guo T, Pedersen JA. Transformation of sulfamethazine by manganese oxide in aqueous solution. Environmental Science & Technology, 2012, 46(5):2642-2651.
    [69] Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM. Biogenic manganese oxides:Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 2004, 32:287-328.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Jinchao Liu, Oumei Wang, Jiajia Li, Fanghua Liu. Mechanisms of extracellular electron transfer in the biogeochemical manganese cycle. [J]. Acta Microbiologica Sinica, 2018, 58(4): 546-559

Copy
Share
Article Metrics
  • Abstract:1449
  • PDF: 4073
  • HTML: 834
  • Cited by: 0
History
  • Received:November 21,2017
  • Revised:March 15,2018
  • Online: April 08,2018
Article QR Code