Microbial driven methane emission mechanisms in wetland ecosystems
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [97]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Wetland is one of the largest carbon sink among all terrestrial ecosystems, and regarded as the main emission source of methane (CH4) in the atmosphere. As CH4 has 34 times warming potential of carbon dioxide (CO2)per mole, it is of great importance to study the contribution of wetland as carbon sink or carbon source to global climate change. Totally, 80% to 90% of CH4 emissions come from microbial activity, and CH4 flux in wetland is closely related to microbial composition, abundance and function of methanogens and methanotrophs. However, the studies on the effects and mechanisms of the functional microorganisms that control CH4 cycling in wetland ecosystem is relatively decentralized. To better understand the microbial regulation mechanism of CH4 emission process, we provide an overview of microbial community associated to CH4 cycling, the factors influencing the microbial methane emission activity, and the microbial methane emission mechanisms in wetland ecosystem. Besides, we indicate further research needs on microbial-driven CH4 emission and their potential response to climate change.

    Reference
    [1] Katyal AK. Climate change:Social, economic, and environmental sustainability. Environmental Forensics, 2009, 10(3):177-182.
    [2] Yuan ZJ, Qian YK, Qi JD, Wu JJ. The potential impacts of warmer-continent-related lower-layer equatorial westerly wind on tropical cyclone initiation. Advances in Atmospheric Sciences, 2012, 29(2):333-343.
    [3] Duxbury JM, Harper LA, Mosier AR. Contributions of agroecosystems to global climate change//Rolston DE. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. Wisconsin, DC:ASA Special Publication, 1993:1-18.
    [4] Bhatia A, Pathak H, Jain N, Singh PK, Singh AK. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmospheric Environment, 2005, 39(37):6976-6984.
    [5] IPCC. Climate Change 2013:The Physical Science Basis. Cambridge:Cambridge University Press, 2014.
    [6] Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE. Improved attribution of climate forcing to emissions. Science, 2009, 326(5953):716-718.
    [7] Conrad R. The global methane cycle:recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 2009, 1(5):285-292.
    [8] Olsson L, Ye S, Yu X, Wei M, Krauss KW, Brix H. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences, 2015, 12(16):4965-4977.
    [9] Meng WQ, Wu ZL, Wang ZL. Control factors and critical conditions between carbon sinking and sourcing of wetland ecosystem. Ecology and Environmental Sciences, 2011, 20(8/9):1359-1366. (in Chinese)孟伟庆, 吴绽蕾, 王中良. 湿地生态系统碳汇与碳源过程的控制因子和临界条件. 生态环境学报, 2011, 20(8/9):1359-1366.
    [10] Mitra S, Wassmann R, Vlek PLG. An appraisal of global wetland area and its organic carbon stock. Current Science, 2005, 88(1):25-35.
    [11] Mitsch WJ, Gosselink JG. The value of wetlands:importance of scale and landscape setting. Ecological Economics, 2000, 35(1):25-33.
    [12] Whiting GJ, Chanton JP. Greenhouse carbon balance of wetlands:methane emission versus carbon sequestration. Tellus B:Chemical and Physical Meteorology, 2001, 53(5):521-528.
    [13] Duan XN, Wang XK, Yin T, Chen L. Advance in the studies on carbon sequestration potential of wetland ecosystem. Ecology and Environment, 2006, 15(5):1091-1095. (in Chinese)段晓男, 王效科, 尹弢, 陈琳. 湿地生态系统固碳潜力研究进展. 生态环境学报, 2006, 15(5):1091-1095.
    [14] Kayranli B, Scholz M, Mustafa A, Hedmark Å. Carbon storage and fluxes within freshwater wetlands:a critical review. Wetlands, 2009, 30(1):111-124.
    [15] Friborg T, Soegaard H, Christensen TR, Lloyd CR, Panikov NS. Siberian wetlands:Where a sink is a source. Geophysical Research Letters, 2003, 30(21):2129-2133.
    [16] Valenzuela EI, Prieto-Davó A, López-Lozano NE, Hernández-Eligio A, Vega-Alvarado L, Juárez K, García-González AS, López MG, Cervantes FJ. Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Applied and Environmental Microbiology, 2017, 83(11):e00645-17.
    [17] Matthews E, Fung I. Methane emission from natural wetlands:global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1987, 1(1):61-86.
    [18] Song CC. Advance in the studies on methane emission from wetlands. Ecology and Environment, 2004, 13(1):69-73. (in Chinese)宋长春. 湿地生态系统甲烷排放研究进展. 生态环境学报, 2004, 13(1):69-73.
    [19] Thauer RK. Functionalization of methane in anaerobic microorganisms. Angewandte Chemie-International Edition, 2010, 49(38):6712-6713.
    [20] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 1999, 28(3):193-202.
    [21] Zhang GS, Jiang N, Liu XL, Dong XZ. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, "Methanolobus psychrophilus" sp. nov., prevalent in Zoige wetland of the Tibetan Plateau. Applied and Environmental Microbiology, 2008, 74(19):6114-6120.
    [22] Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brunea A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of "Candidatus methanoplasma termitum". Applied and Environmental Microbiology, 2015, 81(4):1338-1352.
    [23] Sakai S, Takaki Y, Shimamura S, Sekine M, Tajima T, Kosugi H, Ichikawa N, Tasumi E, T Hiraki A, Shimizu A, Kato Y, Nishiko R, Mori K, Fujita N, Imachi H, Takai K. Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One, 2011, 6(7):e22898.
    [24] Borrel G, O'Toole PW, Harris HMB, Peyret P, Brugère JF, Gribaldo S. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biology and Evolution, 2013, 5(10):1769-1780.
    [25] Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O'Toole PW, Brugère JF. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics, 2014, 15:679.
    [26] Mihajlovski A, Alric M, Brugère JF. A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Research in Microbiology, 2008, 159(7/8):516-521.
    [27] Dziewit L, Pyzik A, Romaniuk K, Sobczak A, Szczesny P, Lipinski L, Bartosik D, Drewniak L. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Frontiers in Microbiology, 2015, 6:694.
    [28] Söllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiology Ecology, 2016, 92(1):fiv149.
    [29] Zhang GS, Tian JQ, Jiang N, Guo XP, Wang YF, Dong XZ. Methanogen community in Zoige wetland of Tibetan Plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environmental Microbiology, 2008, 10(7):1850-1860.
    [30] Horn MA, Matthies C, Küsel K, Schramm A, Drake HL. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Applied and Environmental Microbiology, 2003, 69(1):74-83.
    [31] Chasar LS, Chanton JP, Glaser PH, Siegel DI, Rivers JS. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern minnesota peatland. Global Biogeochemical Cycles, 2000, 14(4):1095-1108.
    [32] Nakagawa F, Yoshida N, Nojiri Y, Makarov VN. Production of methane from alasses in eastern Siberia:implications from its 14C and stable isotopic compositions. Global Biogeochemical Cycles, 2002, 16(3):1041.
    [33] Ding WX, Cai ZC, Wang DX. Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment, 2004, 38(5):751-759.
    [34] Wu XL, Chin KJ, Conrad R. Effect of temperature stress on structure and function of the methanogenic archaeal community in a rice field soil. FEMS Microbiology Ecology, 2002, 39(3):211-218.
    [35] Høj L, Olsen RA, Torsvik VL. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. The ISME Journal, 2008, 2(1):37-48.
    [36] Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 2014, 507(7493):488-491.
    [37] Avery GB, Shannon RD, White JR, Martens CS, Alperin MJ. Controls on methane production in a tidal freshwater estuary and a peatland:methane production via acetate fermentation and CO2 reduction. Biogeochemistry, 2003, 62(1):19-37.
    [38] Conrad R, Schütz H, Babbel M. Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiology Letters, 1987, 45(5):281-289.
    [39] Saarnio S, Alm J, Martikainen PJ, Silvola J. Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from, a boreal mire. Journal of Ecology, 1998, 86(2):261-268.
    [40] Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils:A review. European Journal of Soil Biology, 2001, 37(1):25-50.
    [41] Vizza C, West WE, Jones SE, Hart JA, Lamberti GA. Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences, 2017, 14(2):431-446.
    [42] Lin YX, Liu DY, Ding WX, Kang H, Freeman C, Yuan JJ, Xiang J. Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands. Applied Microbiology and Biotechnology, 2015, 99(24):10779-10791.
    [43] Galand PE, Fritze H, Conrad R, Yrjala K. Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Applied and Environmental Microbiology, 2005, 71(4):2195-2198.
    [44] Malmer N, Svensson BM, Wallén B. Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica Et Phytotaxonomica, 1994, 29(4):483-496.
    [45] Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, Conrad R. Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Applied and Environmental Microbiology, 2007, 73(7):2344-2348.
    [46] Görres CM, Conrad R, Petersen SO. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat. FEMS Microbiology Ecology, 2013, 85(2):227-240.
    [47] He SM, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, Tremblay J, Glavina del Rio T, Waldrop MP, Windham-Myers L, Tringe SG. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio, 2015, 6(3):e00066-15.
    [48] Kim SY, Veraart AJ, Meima-Franke M, Bodelier PLE. Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma, 2015, 259-260:354-361.
    [49] Roden EE, Wetzel RG. Competition between Fe(Ⅲ)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microbial Ecology, 2003, 45(3):252-258.
    [50] Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontiers in Microbiology, 2015, 6:1346.
    [51] Murrell JC, Gilbert B, McDonald IR. Molecular biology and regulation of methane monooxygenase. Archives of Microbiology, 2000, 173(5/6):325-332.
    [52] Horz HP, Yimga MT, Liesack W. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Applied and Environmental Microbiology, 2001, 67(9):4177-4185.
    [53] Cai CY, He ZF, Hu BL. Progresses in the classification and mechanism of methane-oxidizing bacteria. Journal of Zhejiang University (Agriculture & Life Sciences), 2016, 42(3):273-281. (in Chinese)蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展. 浙江大学学报(农业与生命科学版), 2016, 42(3):273-281.
    [54] McDonald IR, Bodrossy L, Chen Y, Murrell JC. Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology, 2008, 74(5):1305-1315.
    [55] Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiology Reviews, 2010, 34(4):496-531.
    [56] Zhang JC, Xu YQ, Lu YH. Microbial mechanisms of methane production and oxidation in terrestrial ecosystems. Acta Ecologica Sinica, 2015, 35(20):6592-6603. (in Chinese)张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理. 生态学报, 2015, 35(20):6592-6603.
    [57] Ma K, Qiu QF, Lu YH. Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biology, 2010, 16(11):3085-3095.
    [58] Macalady JL, McMillan AMS, Dickens AF, Tyler SC, Scow KM. Population dynamics of type I and Ⅱ methanotrophic bacteria in rice soils. Environmental Microbiology, 2002, 4(3):148-157.
    [59] Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou SB, Ly B, Saw JH, Zhou ZM, Ren Y, Wang JM, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 2007, 450(7171):879-882.
    [60] Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature, 2007, 450(7171):874-878.
    [61] Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland NK. Methane oxidation at 55℃ and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1):300-304.
    [62] Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs KU, Joye SB. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 2015, 6:7477.
    [63] Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature, 1999, 398(6730):802-805.
    [64] Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 2001, 293(5529):484-487.
    [65] Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 2012, 491(7425):541-546.
    [66] Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, Op den Camp HJM, Jetten MSM, Strous M. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 2006, 440(7086):918-921.
    [67] Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM, Jetten MSM, Strous M. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental Microbiology, 2008, 10(11):3164-3173.
    [68] Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and Environmental Microbiology, 2009, 75(11):3656-3662.
    [69] Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, den Camp HJMO, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464(7288):543-548.
    [70] Wu ML, Ettwig KF, Jetten MSM, Strous M, Keltjens JT, van Niftrik L. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochemical Society Transactions, 2011, 39(1):243-248.
    [71] Hu SH, Zeng RJ, Keller J, Lant PA, Yuan ZG. Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environmental Microbiology Reports, 2011, 3(3):315-319.
    [72] Hu SH, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG. Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiology Reports, 2009, 1(5):377-384.
    [73] Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG, Tyson GW. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013, 500(7464):567-570.
    [74] Beal EJ, House CH, Orphan VJ. Manganese-and iron-dependent marine methane oxidation. Science, 2009, 325(5937):184-187.
    [75] Fu L, Li SW, Ding ZW, Ding J, Lu YZ, Zeng RJ. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(Ⅱ). Water Research, 2016, 88:808-815.
    [76] Bowman JP, Sly LI, Stackebrandt E. The phylogenetic position of the family Methylococcaceae. International Journal of Systematic Bacteriology, 1995, 45(1):182-185.
    [77] Hütsch BW. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biology & Fertility of Soils, 1998, 28(1):27-35.
    [78] Mou XJ, Liu XT, Tong C, Sun ZG. Short-term effects of exogenous nitrogen on CH4 and N2O effluxes from Cyperus malaccensis marsh in the Min River estuary. Environmental Science, 2012, 33(7):2482-2489. (in Chinese)牟晓杰, 刘兴土, 仝川, 孙志高. 闽江河口短叶茳芏湿地CH4和N2O排放对氮输入的短期响应. 环境科学, 2012, 33(7):2482-2489.
    [79] Scheutz C, Kjeldsen P. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality, 2004, 33(1):72-79.
    [80] Adamsen APS, King GM. Methane consumption in temperate and subarctic forest soils:rates, vertical zonation, and responses to water and nitrogen. Applied & Environmental Microbiology, 1993, 59(2):485-490.
    [81] King GM, Schnell S. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Applied & Environmental Microbiology, 1994, 60(10):3508-3513.
    [82] Reay DS, Nedwell DB. Methane oxidation in temperate soils:effects of inorganic N. Soil Biology & Biochemistry, 2004, 36(12):2059-2065.
    [83] Henneberg A, Brix H, Sorrell BK. The interactive effect of Juncus effusus and water table position on mesocosm methanogenesis and methane emissions. Plant and Soil, 2016, 400(1/2):45-54.
    [84] Sha CY, Tan J, Wang Q, Wang M. Methane and carbon dioxide emissions from different types of riparian wetland. Ecology and Environmental Sciences, 2015, 24(7):1182-1190. (in Chinese)沙晨燕, 谭娟, 王卿, 王敏. 不同类型河滨湿地甲烷和二氧化碳排放初步研究. 生态环境学报, 2015, 24(7):1182-1190.
    [85] Mander Ü, Maddison M, Soosaar K, Koger H, Teemusk A, Truu J, Well R, Sebilo M. The impact of a pulsing water table on wastewater purification and greenhouse gas emission in a horizontal subsurface flow constructed wetland. Ecological Engineering, 2015, 80:69-78.
    [86] Kankaala P, Ojala A, Käki T. Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry, 2004, 68(3):297-311.
    [87] Kwon MJ, Beulig F, Ilie I, Wildner M, Küsel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Göckede M. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology, 2017, 23(6):2396-2412.
    [88] Hao QJ, Wang YS, Jiang CS, Wang CK, Wang MX. A review on methane emission from wetlands. Chinese Journal of Ecology, 2005, 24(2):170-175. (in Chinese)郝庆菊, 王跃思, 江长胜, 王长科, 王明星. 湿地甲烷排放研究若干问题的探讨. 生态学杂志, 2005, 24(2):170-175.
    [89] Bubier JL. The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. The Journal of Ecology, 1995, 83(3):403-420.
    [90] Wang XY, Siciliano S, Helgason B, Bedard-Haughn A. Responses of a mountain peatland to increasing temperature:A microcosm study of greenhouse gas emissions and microbial community dynamics. Soil Biology and Biochemistry, 2017, 110:22-33.
    [91] Metje M, Frenzel P. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environmental Microbiology, 2007, 9(4):954-964.
    [92] Chen H, Gao YH, Yao SP, Wu N, Wang YF, Luo P, Tian JQ. Spatiotemporal variation of methane emissions from alpine wetlands in Zoige Plateau. Acta Ecologica Sinica, 2008, 28(7):3425-3437. (in Chinese)陈槐, 高永恒, 姚守平, 吴宁, 王艳芬, 罗鹏, 田建卿. 若尔盖高原湿地甲烷排放的时空异质性. 生态学报, 2008, 28(7):3425-3437.
    [93] Mander U, Teiter S, Augustin J. Emission of greenhouse gases from constructed wetlands for wastewater treatment and from riparian buffer zones. Water Science and Technology, 2005, 52(10/11):167-176.
    [94] Sommer M, Fiedler S. Methane emissions from wetland soils in Southwest-Germany//Broll G, Merbach W, Pfeiffer EM. Wetlands in Central Europe. Berlin, Heidelberg:Springer, 2002:177-196.
    [95] Herbst M, Friborg T, Schelde K, Jensen R, Ringgaard R, Vasquez V, Thomsen AG, Soegaard H. Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland. Biogeosciences, 2013, 10(1):39-52.
    [96] Wang Y, Zhang R, He ZL, van Nostrand JD, Zheng Q, Zhou JZ, Jiao NZ. Functional gene diversity and metabolic potential of the microbial community in an estuary-shelf environment. Frontiers in Microbiology, 2017, 8:1153.
    [97] Xue K, Yuan MM, Shi ZJ, Qin YJ, Deng Y, Cheng L, Wu LY, He ZL, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo CW, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo YQ, Zhou JZ. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 2016, 6(6):595-600.
    Cited by
Get Citation

Hang Gu, Fanshu Xiao, Zhili He, Qingyun Yan. Microbial driven methane emission mechanisms in wetland ecosystems. [J]. Acta Microbiologica Sinica, 2018, 58(4): 618-632

Copy
Related Videos

Share
Article Metrics
  • Abstract:1363
  • PDF: 4892
  • HTML: 1245
  • Cited by: 0
History
  • Received:November 05,2017
  • Revised:January 10,2018
  • Online: April 08,2018
Article QR Code