Intestinal defense system and mechanism of maintenance of microbiota homeostasis in insects
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [86]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In the long-term evolution process, insects have formed a unique intestinal defense system. The combination of physical barrier and the immune system resists invasive microbes. Alike most metazoans, the guts of insects are in permanent contact with the microbial realm that includes beneficial symbionts, food-borne microbes and life-threatening pathogens. Thus, gut epithelium can tolerate a certain amount of commensal microbes proliferation for the beneficial gut-microbe interactions, accompanied by the proficient elimination of detrimental microbes. Based on the function of Duox-ROS system and immune deficiency pathway in the intestinal immune response, these immune systems are involved in the regulation of gut microbiota homeostasis. In this article, we reviewed recent advances in insect intestinal defense mechanisms, combined with the intestinal immune signaling pathways and the regulation mechanism of intestinal immune system on the gut microbiota homeostasis.

    Reference
    [1] Thong-On A, Suzuki K, Noda S, Inoue JI, Kajiwara S, Ohkuma M. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes and Environments, 2012, 27(2):186-192.
    [2] Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nature Communications, 2015, 6:7618.
    [3] Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, van Maele L, Sirard JC, Mueller AJ, Heikenwalder M, Macpherson AJ, Strugnell R, von Mering C, Hardt WD. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathogens, 2010, 6(9):e1001097.
    [4] Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 2011, 14(1):82-91.
    [5] Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. Animal behavior and the microbiome. Science, 2012, 338(6104):198-199.
    [6] Cirimotich CM, Dong YM, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science, 2011, 332(6031):855-858.
    [7] Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host & Microbe, 2011, 10(4):307-310.
    [8] Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46):20051-20056.
    [9] Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science, 2011, 334(6056):670-674.
    [10] Weiss BL, Wang JW, Aksoy S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biology, 2011, 9(5):e1000619.
    [11] Nyholm SV, Graf J. Knowing your friends:invertebrate innate immunity fosters beneficial bacterial symbioses. Nature Reviews Microbiology, 2012, 10(12):815-827.
    [12] Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 2009, 9(5):313-323.
    [13] Engel P, Moran NA. The gut microbiota of insects-diversity in structure and function. FEMS Microbiology Reviews, 2013, 37(5):699-735.
    [14] Ha EM, Oh CT, Bae YS, Lee WJ. A direct role for dual oxidase in Drosophila gut immunity. Science, 2005, 310(5749):847-850.
    [15] Ryu JH, Ha EM, Lee WJ. Innate immunity and gut-microbe mutualism in Drosophila. Developmental & Comparative Immunology, 2010, 34(4):369-376.
    [16] Hegedus D, Erlandson M, Gillott C, Toprak U. New insights into peritrophic matrix synthesis, architecture, and function. Annual Review of Entomology, 2009, 54:285-302.
    [17] Tellam RL. The peritrophic matrix//Lehane MJ, Billingsley PF. Biology of the Insect Midgut. London:Chapman and Hall, 1996:86-114.
    [18] Hayakawa T, Shitomi Y, Miyamoto K, Hori H. GalNAc pretreatment inhibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori. FEBS Letters, 2004, 576(3):331-335.
    [19] Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(32):11414-11419.
    [20] Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38):15966-15971.
    [21] Opota O, Vallet-Gély I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR, Roussel A, van der Goot FG, Lemaitre B. Monalysin, a novel β-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathogens, 2011, 7(9):e1002259.
    [22] Blemont M, Vincentelli R, Kellenberger C, Opota O, Lemaitre B, Roussel A, Leone P. Crystallization and preliminary X-ray analysis of monalysin, a novel β-pore-forming toxin from the entomopathogen Pseudomonas entomophila. Acta Crystallographica Section F:Structural Biology and Crystallization Communications, 2013, 69(Pt 8):930-933.
    [23] Syed ZA, Härd T, Uv A, van Dijk-Härd IF. A potential role for Drosophila mucins in development and physiology. PLoS One, 2008, 3(8):e3041.
    [24] Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. Drosophila intestinal response to bacterial infection:activation of host defense and stem cell proliferation. Cell Host & Microbe, 2009, 5(2):200-211.
    [25] Bonnay F, Cohen-Berros E, Hoffmann M, Kim SY, Boulianne GL, Hoffmann JA, Matt N, Reichhart JM. Big bang gene modulates gut immune tolerance in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8):2957-2962.
    [26] Hegan PS, Mermall V, Tilney LG, Mooseker MS. Roles for Drosophila melanogaster myosin IB in maintenance of enterocyte brush-border structure and resistance to the bacterial pathogen Pseudomonas entomophila. Molecular Biology of the Cell, 2007, 18(11):4625-4636.
    [27] Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. The ISME Journal, 2016, 10(8):1866-1876.
    [28] Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annual Review of Immunology, 2007, 25:697-743.
    [29] Neyen C, Poidevin M, Roussel A, Lemaitre B. Tissue-and ligand-specific sensing of gram-negative infection in Drosophila by PGRP-LC isoforms and PGRP-LE. The Journal of Immunology, 2012, 189(4):1886-1897.
    [30] Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host & Microbe, 2012, 12(2):153-165.
    [31] Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunology, 2003, 4(5):478-484.
    [32] Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N. Monomeric and polymeric Gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity, 2004, 20(5):637-649.
    [33] Zaidman-Rémy A, Hervé M, Poidevin M, Pili-Floury S, Kim MS, Blanot D, Oh BH, Ueda R, Mengin-Lecreulx D, Lemaitre B. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity, 2006, 24(4):463-473.
    [34] Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathogens, 2006, 2(6):e56.
    [35] Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world:insights from Drosophila melanogaster. Nature Reviews Microbiology, 2013, 11(9):615-626.
    [36] Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes & Development, 2009, 23(19):2333-2344.
    [37] Johnson JW, Fisher JF, Mobashery S. Bacterial cell-wall recycling. Annals of the New York Academy of Sciences, 2013, 1277(1):54-75.
    [38] Kuraishi T, Hori A, Kurata S. Host-microbe interactions in the gut of Drosophila melanogaster. Frontiers in Physiology, 2013, 4:375.
    [39] Mellroth P, Steiner H. PGRP-SB1:an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochemical and Biophysical Research Communications, 2006, 350(4):994-999.
    [40] Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathogens, 2006, 2(2):e14.
    [41] Zaidman-Rémy A, Poidevin M, Hervé M, Welchman DP, Paredes JC, Fahlander C, Steiner H, Mengin-Lecreulx D, Lemaitre B. Drosophila immunity:analysis of PGRP-SB1 expression, enzymatic activity and function. PLoS One, 2011, 6(2):e17231.
    [42] Paredes JC, Welchman DP, Poidevin M, Lemaitre B. Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity, 2011, 35(5):770-779.
    [43] Kleino A, Myllymäki H, Kallio J, Vanha-Aho LM, Oksanen K, Ulvila J, Hultmark D, Valanne S, Rämet M. Pirk is a negative regulator of the Drosophila Imd pathway. The Journal of Immunology, 2008, 180(8):5413-5422.
    [44] Maillet F, Bischoff V, Vignal C, Hoffmann J, Royet J. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host & Microbe, 2008, 3(5):293-303.
    [45] Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science, 2008, 319(5864):777-782.
    [46] Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen:a double-edged sword revisited. Annual Review of Pathology:Mechanisms of Disease, 2014, 9:119-145.
    [47] Freeman BA, Crapo JD. Biology of disease:free radicals and tissue injury. Laboratory Investigation; A Journal of Technical Methods and Pathology, 1982, 47(5):412-426.
    [48] Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 2004, 4(3):181-189.
    [49] Zug R, Hammerstein P. Wolbachia and the insect immune system:what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Frontiers in Microbiology, 2015, 6:1201.
    [50] Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ. An antioxidant system required for host protection against gut infection in Drosophila. Developmental Cell, 2005, 8(1):125-132.
    [51] Whitten MMA, Ratcliffe NA. In vitro superoxide activity in the haemolymph of the West Indian leaf cockroach, Blaberus discoidalis. Journal of Insect Physiology, 1999, 45(7):667-675.
    [52] Ishii K, Hamamoto H, Kamimura M, Sekimizu K. Activation of the silkworm cytokine by bacterial and fungal cell wall components via a reactive oxygen species-triggered mechanism. Journal of Biological Chemistry, 2008, 283(4):2185-2191.
    [53] Hu XL, Yang R, Zhang X, Chen L, Xiang XW, Gong CL, Wu XF. Molecular cloning and functional characterization of the dual oxidase (BmDuox) gene from the silkworm Bombyx mori. PLoS One, 2013, 8(8):e70118.
    [54] de Muñoz FGG, Lanz-Mendoza H, Hernández-Hernández FC. Free radical generation during the activation of hemolymph prepared from the homopteran Dactylopius coccus. Archives of Insect Biochemistry and Physiology, 2007, 65(1):20-28.
    [55] Bergin D, Reeves EP, Renwick J, Wientjes FB, Kavanagh K. Superoxide production in Galleria mellonella hemocytes:identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infection and Immunity, 2005, 73(7):4161-4170.
    [56] Diaz-Albiter H, Sant'Anna MRV, Genta FA, Dillon RJ. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the phlebotomine sand fly Lutzomyia longipalpis. Journal of Biological Chemistry, 2012, 287(28):23995-24003.
    [57] Mikonranta L, Mappes J, Kaukoniitty M, Freitak D. Insect immunity:oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Frontiers in Zoology, 2014, 11:23.
    [58] Pereira LS, Oliveira PL, Barja-Fidalgo C, Daffre S. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Experimental Parasitology, 2001, 99(2):66-72.
    [59] Kumar S, Christophides GK, Cantera R, Charles B, Han YS, Meister S, Dimopoulos G, Kafatos FC, Barillas-Mury C. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24):14139-14144.
    [60] Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, Barillas-Mury C. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. Journal of Biological Chemistry, 2008, 283(6):3217-3223.
    [61] Gonçalves RLS, Oliveira JHM, Oliveira GA, Andersen JF, Oliveira MF, Oliveira PL, Barillas-Mury C. Mitochondrial reactive oxygen species modulate mosquito susceptibility to Plasmodium infection. PLoS One, 2012, 7(7):e41083.
    [62] Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science, 2010, 327(5973):1644-1648.
    [63] Anh NTT, Nishitani M, Harada S, Yamaguchi M, Kamei K. Essential role of Duox in stabilization of Drosophila wing. Journal of Biological Chemistry, 2011, 286(38):33244-33251.
    [64] Lambeth JD, Kawahara T, Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radical Biology and Medicine, 2007, 43(3):319-331.
    [65] Geiszt M, Leto TL. The Nox family of NAD(P)H oxidases:host defense and beyond. Journal of Biological Chemistry, 2004, 279(50):51715-51718.
    [66] Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. The FASEB Journal, 2003, 17(11):1502-1504.
    [67] Forteza R, Salathe M, Miot F, Forteza R, Conner GE. Regulated hydrogen peroxide production by Duox in human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 32(5):462-469.
    [68] Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, Kang DM, Lee WJ. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Developmental Cell, 2009, 16(3):386-397.
    [69] Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nature Immunology, 2009, 10(9):949-957.
    [70] Chakrabarti S, Poidevin M, Lemaitre B. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine. PLoS Genetics, 2014, 10(9):e1004659.
    [71] Bae YS, Choi MK, Lee WJ. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends in Immunology, 2010, 31(7):278-287.
    [72] Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell, 2013, 153(4):797-811.
    [73] Lee KA, Kim B, Bhin J, Kim DH, You H, Kim EK, Kim SH, Ryu JH, Hwang D, Lee WJ. Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes. Cell Host & Microbe, 2015, 17(2):191-204.
    [74] Douglas AE. The molecular basis of bacterial-insect symbiosis. Journal of Molecular Biology, 2014, 426(23):3830-3837.
    [75] Schneider DS, Ayres JS. Two ways to survive infection:what resistance and tolerance can teach us about treating infectious diseases. Nature Reviews Immunology, 2008, 8(11):889-895.
    [76] Guo LL, Karpac J, Tran SL, Jasper H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell, 2014, 156(1/2):109-122.
    [77] Lhocine N, Ribeiro PS, Buchon N, Wepf A, Wilson R, Tenev T, Lemaitre B, Gstaiger M, Meier P, Leulier F. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host & Microbe, 2008, 4(2):147-158.
    [78] Pang XJ, Xiao XP, Liu Y, Zhang RD, Liu JY, Liu QY, Wang PH, Cheng G. Mosquito C-type lectins maintain gut microbiome homeostasis. Nature Microbiology, 2016, 1:16023.
    [79] Oliveira JHM, Gonçalves RLS, Lara FA, Dias FA, Gandara ACP, Menna-Barreto RFS, Edwards MC, Laurindo FRM, Silva-Neto MAC, Sorgine MHF, Oliveira PL. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathogens, 2011, 7(3):e1001320.
    [80] Staubach F, Baines J F, Künzel S, Bik EM, Petrov DA. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One, 2013, 8(8):e70749.
    [81] Wong CNA, Ng P, Douglas AE. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environmental Microbiology, 2011, 13(7):1889-1900.
    [82] Broderick NA, Buchon N, Lemaitre B. Microbiota-induced changes in Drosophila melanogaster host gene expression and gut morphology. mBio, 2014, 5(3):e01117-14.
    [83] Wang H, Jin L, Zhang H. Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. Journal of Applied Microbiology, 2011, 110(6):1390-1401.
    [84] Yao ZC, Wang AL, Li YS, Cai ZH, Lemaitre B, Zhang HY. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. The ISME Journal, 2016, 10(5):1037-1050.
    [85] Champion CJ, Xu JN. The impact of metagenomic interplay on the mosquito redox homeostasis. Free Radical Biology and Medicine, 2017, 105:79-85.
    [86] Xiao XP, Yang LJ, Pang XJ, Zhang RD, Zhu YB, Wang PH, Gao GJ, Cheng G. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nature Microbiology, 2017, 2:17020.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Zhichao Yao, Shuai Bai, Hongyu Zhang. Intestinal defense system and mechanism of maintenance of microbiota homeostasis in insects. [J]. Acta Microbiologica Sinica, 2018, 58(6): 1036-1048

Copy
Share
Article Metrics
  • Abstract:1360
  • PDF: 4310
  • HTML: 1414
  • Cited by: 0
History
  • Received:July 27,2017
  • Revised:November 02,2017
  • Online: June 01,2018
Article QR Code