Advances in studies on Lepidoptera microsporidium pathogen
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [74]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    As an important pathogenic microorganism, microsporidia are widely found in Lepidopteran insects. Microsporidia diseases not only affect the natural balance of wild insect populations, but also are detrimental to the economic and resource insects such as Bombyx mori and Antheraea pernyi. The molecular biology of microsporidia is relatively less studied and the microsporidian spore wall is fairly rigid. These disadvantages make the study of microsporidia more difficult. With the rapid development of the sequencing technique and the preparation method of nucleinic acid, protein and other biomacromolecules, various microsporidia researches based on Omicsare now reported, which have significantly contributed to this field. Our review focouses on interactions between microsporidian parasites and their Lepidopteran hosts, and recent progress in microsporidia genome, transcriptome and proteome studies. The further research of insect microsporidia will provide new insights on the biocontrol of lepidopteran pests and improve the diagnosis, prevention and treatment of the microsporidia diseases of economic insects as well.

    Reference
    [1] Chen BS, Lu XM, Shao YQ. Diversity of the gut microbiota in lepidopteran insects and their interaction with hosts. Acta Entomologica Sinica, 2017, 60(6):710-722. (in Chinese)陈勃生, 鲁兴萌, 邵勇奇. 鳞翅目昆虫肠道微生物的多样性及其与宿主的相互作用. 昆虫学报, 2017, 60(6):710-722.
    [2] Shao YQ, Chen BS, Sun C, Ishida K, Hertweck C, Boland W. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chemical Biology, 2017, 24(1):66-75.
    [3] Vilanova C, Baixeras J, Latorre A, Porcar M. The generalist inside the specialist:gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Frontiers in Microbiology, 2016, 7:1005.
    [4] Ormond EL, Thomas APM, Pugh PJA, Pell JK, Roy HE. A fungal pathogen in time and space:the population dynamics of Beauveria bassiana in a conifer forest. FEMS Microbiology Ecology, 2010, 74(1):146-154.
    [5] Lu XM, Zhou HC. The relationship between Nosema bombycis, other microsporidia and fungi. Science of Sericulture, 2007, 33(2):325-328. (in Chinese)鲁兴萌, 周华初. 家蚕微孢子虫(Nosema bombycis)与其它微孢子虫及真菌的进化关系. 蚕业科学, 2007, 33(2):325-328.
    [6] 金伟. 家蚕病理学. 北京:中国农业出版社, 2001.
    [7] Lu XM, Shao YQ. A review on current status and development trend of pebrine prevention and control technology. Science of Sericulture, 2016, 42(6):945-952. (in Chinese)鲁兴萌, 邵勇奇. 家蚕微粒子病防控技术研究的发展现状与趋势. 蚕业科学, 2016, 42(6):945-952.
    [8] Lu XM, Shao YQ. A review of inspection technology against silkworm pebrine disease. Science of Sericulture, 2016, 42(4):717-721. (in Chinese)鲁兴萌, 邵勇奇. 家蚕微粒子病检验技术综述. 蚕业科学, 2016, 42(4):717-721.
    [9] Stentiford GD, Becnel JJ, Weiss LM, Keeling PJ, Didier ES, Williams BA, Bjornson S, Kent ML, Freeman MA, Brown MJ, Troemel ER, Roesel K, Sokolova Y, Snowden KF, Solter L. Microsporidia-emergent pathogens in the global food chain. Trends in parasitology, 2016, 32(4):336-348.
    [10] Yang DL, Pan LX, Peng P, Dang XQ, Li CF, Li T, Long MX, Chen J, Wu YJ, Du HH, Luo B, Song Y, Tian R, Luo J, Zhou ZY, Pan GQ. Interaction between SWP9 and polar tube proteins of the microsporidian Nosema bombycis and function of SWP9 as a scaffolding protein contribute to polar tube tethering to the spore wall. Infection and Immunity, 2017, 85(3):e00872-16.
    [11] Pan GQ, Xu JS, Li T, Xia QY, Liu SL, Zhang GJ, Li SG, Li CF, Liu HD, Yang L, Liu T, Zhang X, Wu ZL, Fan W, Dang XQ, Xiang H, Tao ML, Li YH, Hu JH, Li Z, Lin LP, Luo J, Geng L, Wang LL, Long MX, Wan YJ, He NJ, Zhang Z, Lu C, Keeling PJ, Wang J, Xiang ZH, Zhou ZY. Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC Genomics, 2013, 14:186.
    [12] Liu RH, Yang JN, Li YJ, Zhou DX. Controling effect of Nosema bombycis against Locust. Hubei Agricultural Sciences, 2012, 51(9):1797-1799. (in Chinese)刘仁华, 杨俊年, 李彦杰, 周大祥. 家蚕微孢子虫(Nosema bombycis)对蝗虫的防治效果. 湖北农业科学, 2012, 51(9):1797-1799.
    [13] Johny S, Kanginakudru S, Muralirangan MC, Nagaraju J. Morphological and molecular characterization of a new microsporidian (Protozoa:Microsporidia) isolated from Spodoptera litura (Fabricius) (Lepidoptera:Noctuidae). Parasitology, 2006, 132(6):803-814.
    [14] Wang FW, Lu XM. Microsporidiosis in insects. Chinese Journal of Applied Entomology, 2003, 40(1):5-8. (in Chinese)汪方炜, 鲁兴萌. 昆虫的微孢子虫病. 应用昆虫学报, 2003, 40(1):5-8.
    [15] Lu XM, Jin W. Recent advances in taxonomy of phylum microspora. Bulletin of Science and Technology, 1999, 15(2):119-125. (in Chinese)鲁兴萌, 金伟. 微孢子虫分类学研究进展. 科技通报, 1999, 15(2):119-125.
    [16] Shi WP, Ji R. Research and application of entomopathogenic microsporidium. Chinese Journal of Biological Control, 2017, 33(1):11-17. (in Chinese). 石旺鹏, 季荣. 昆虫病原微孢子研究与应用. 中国生物防治学报, 2017, 33(1):11-17.
    [17] Hu X, Xiao GH, Zheng P, Shang YF, Su Y, Zhang XY, Liu XZ, Zhan S, St Leger RJ, Wang CS. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47):16796-16801.
    [18] Wittner M, Weiss LM. The microsporidia and microsporidiosis. Washington DC:ASM Press, 1999.
    [19] Delbac F, Polonais V. The microsporidian polar tube and its role in invasion//Burleigh BA, Soldati-Favre D. Molecular mechanisms of parasite invasion. Subcellular Biochemistry, vol 47. New York:Springer, 2008:208-220.
    [20] Franzen C. Microsporidia:how can they invade other cells? Trends in Parasitology, 2004, 20(6):275-279.
    [21] Franzen C. How do microsporidia invade cells? Folia Parasitologica, 2005, 52(1/2):36-40.
    [22] Xu YJ, Weiss LM. The microsporidian polar tube:a highly specialised invasion organelle. International Journal for Parasitology, 2005, 35(9):941-953.
    [23] Foucault C, Drancourt M. Actin mediates Encephalitozoon intestinalis entry into the human enterocyte-like cell line, Caco-2. Microbial Pathogenesis, 2000, 28(2):51-58.
    [24] Tiago PV, Fungaro MHP, Furlaneto MC. Cuticle-degrading proteases from the entomopathogen Metarhizium flavoviride and their distribution in secreted and intracellular fractions. Letters in Applied Microbiology, 2002, 34(2):91-94.
    [25] 鲁兴萌. 蚕桑高新技术研究与进展. 北京:中国农业大学出版社, 2012.
    [26] Magaud A, Achbarou A, Desportes-Livage I. Cell invasion by the microsporidium Encephalitozoon intestinalis. Journal of Eukaryotic Microbiology, 2010, 44(S6):81S.
    [27] Méténier G, Vivarès CP. Molecular characteristics and physiology of microsporidia. Microbes and Infection, 2001, 3(5):407-415.
    [28] Maddox JV, Baker MD, Jeffords MR, Kuras M, Linde A, Solter LF, McManus ML, Vávra J, Vossbrinck CR. Nosema portugal n. sp., isolated from gypsy moths (Lymantria dispar L.) collected in portugal. Journal of Invertebrate Pathology, 1999, 73(1):1-14.
    [29] Tsai YC, Solter LF, Wang CY, Fan HS, Chang CC, Wang CH. Morphological and molecular studies of a microsporidium (Nosema sp.) isolated from the thee spot grass yellow butterfly, Eurema blanda arsakia (Lepidoptera:Pieridae). Journal of Invertebrate Pathology, 2009, 100(2):85-93.
    [30] Hu WL, Xu QY, Tang B, Wang SG. Advance of study of the pathogenicity and transmission of Microsporidia to insects' immune and reproduction. Journal of Environmental Entomology, 2014, 36(6):1040-1045. (in Chinese)胡微蕾, 徐青叶, 唐斌, 王世贵. 微孢子虫致病与传播及其对昆虫免疫繁殖作用的研究进展. 环境昆虫学报, 2014, 36(6):1040-1045.
    [31] Ran HF, Feng SL, Pan WL, Fan XH. Observations on histopathology of tissue infected by Nosema sp. (Microsporidia) in Helicoverpa armigera (Hubner) larvae. Acta Entomologica Sinica, 2003, 46(1):118-120. (in Chinese)冉红凡, 冯书亮, 潘文亮, 范秀华. 棉铃虫幼虫感染棉铃虫微孢子虫后的组织病理变化. 昆虫学报, 2003, 46(1):118-120.
    [32] Kermani N, Abu-Hassan ZA, Dieng H, Ismail NF, Attia M, Abd Ghani I. Pathogenicity of Nosema sp. (Microsporidia) in the diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae). PLoS One, 2013, 8(5):e62884.
    [33] Salkeld EH. A toxicological and histophysiological study of certain new insecticides as "Stomach Poisons" to the honey bee Apis mellifera L. The Canadian Entomologist, 1951, 83(2):39-52.
    [34] Yang Q, Li FT, Wu FQ, Tang CM, Luo GQ. Characterization of a microsporidium isolated from larvae of beet armyworm, Laphygma exigua H. Science of Sericulture, 2007, 33(1):57-61. (in Chinese)杨琼, 李夫涛, 吴福泉, 唐翠明, 罗国庆. 一种从甜菜夜蛾分离的微孢子虫的生物学特性研究. 蚕业科学, 2007, 33(1):57-61.
    [35] Wang CY, Solter LF, Huang WF, Tsai YC, Lo CF, Wang CH. A new microsporidian species, Vairimorpha ocinarae n. sp., isolated from Ocinara lida Moore (Lepidoptera:Bombycidae) in Taiwan. Journal of Invertebrate Pathology, 2009, 100(2):68-78.
    [36] Arrese EL, Soulages JL. Insect fat body:energy, metabolism, and regulation. Annual Review of Entomology, 2010, 55(1):207-225.
    [37] Wu QY. Body fat metabolism. Chinese Bulletin of Entomology, 1981, (2):47-50. (in Chinese)吴秋雁. 昆虫脂肪体的代谢作用. 应用昆虫学报, 1981, (2):47-50.
    [38] Wroblewski VJ, Harshman LG, Hanzlik TN, Hammock BD. Regulation of juvenile hormone esterase gene expression in the tobacco budworm (Heliothis virescens). Archives of Biochemistry and Biophysics, 1990, 278(2):461-466.
    [39] Davidowitz G, Nijhout HF. The physiological basis of reaction norms:the interaction among growth rate, the duration of growth and body size. Integrative and Comparative Biology, 2004, 44(6):443-449.
    [40] Callier V, Nijhout HF. Control of body size by oxygen supply reveals size-dependent and size-independent mechanisms of molting and metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35):14664-14669.
    [41] Karlhofer J, Schafellner C, Hoch G. Reduced activity of juvenile hormone esterase in microsporidia-infected Lymantria dispar larvae. Journal of Invertebrate Pathology, 2012, 110(1):126-128.
    [42] Zhou C, Pan GQ, Wan YJ, Zhou ZY. Optimization of the procedures of isolation and purification of Nosema bombycis in silkworm. Newsletter of Sericultural Science, 2002, 22(1):7-9. (in Chinese)周成, 潘国庆, 万永继, 周泽扬. 家蚕微孢子虫N. bombycis分离纯化方法的优化. 蚕学通讯, 2002, 22(1):7-9.
    [43] Jiang YR, Deng ZH, Wang BY, Duan YX, Qin L. Study on the method of separation and purification in Nosema pernyi. Chinese Journal of Applied Entomology, 2011, 48(2):452-456. (in Chinese)姜义仁, 邓真华, 王伯阳, 段玉玺, 秦利. 柞蚕微孢子虫孢子分离纯化方法. 应用昆虫学报, 2011, 48(2):452-456.
    [44] Liu HD, Ding ST, Qin QZ, Tang J, Liu L, Peng HM. Morphological and phylogenetic analysis of Nosema sp. HR (Microsporidia, Nosematidae):a new microsporidian pathogen of Histia rhodope Cramer (Lepidoptera, Zygaenidae). Parasitology Research, 2015, 114(3):983-988.
    [45] Huang SK, Lu XM, Wang FW, Jin W, Chen SL. Comparative study on spore surface proteins of two microsporidia and their infectivity to silkworm Bombyx mori. Science of Sericulture, 2004, 30(2):157-163. (in Chinese)黄少康, 鲁兴萌, 汪方炜, 金伟, 陈盛禄. 两种微孢子虫孢子表面蛋白及对家蚕侵染性的比较研究. 蚕业科学, 2004, 30(2):157-163.
    [46] Cai SF, He XY, He XK, Qiu HH, Li GC, He YQ, Lu XM. A protocol for fast and efficient preparation of genomic DNA and total proteins of Nosema bombycis. Science of Sericulture, 2011, 37(6):1019-1024. (in Chinese)蔡顺风, 何欣怡, 何祥康, 邱海洪, 李光才, 何永强, 鲁兴萌. 一种快速高效制备家蚕微孢子虫基因组DNA和总蛋白的方法. 蚕业科学, 2011, 37(6):1019-1024.
    [47] Pan MH, Wan YJ, Lu C. Studies on the methods for preparing DNA and of different species of microsporidia. Journal of Southwest Agricultural University, 2001, 23(2):111-112. (in Chinese)潘敏慧, 万永继, 鲁成. 不同种类微孢子虫DNA制备方法的研究. 西南大学学报(自然科学版), 2001, 23(2):111-112.
    [48] Li FT, Wang YW. The comparison of microsporidan DNA extraction method. Guangdong Sericulture, 2006, 40(3):32-34. (in Chinese). 李夫涛, 王彦文. 微孢子虫DNA提取方法的比较. 广东蚕业, 2006, 40(3):32-34.
    [49] He YQ, Wu S, Lu XM, Qiu HH, Shuai JB, Zhang XF, Wang SH, Xu GQ, Li GC, Dong Q. Influence of DNA extraction methods on detection of Nosema bombycis by traditional PCR and real-time PCR methods. Acta Entomologica Sinica, 2011, 54(11):1329-1334. (in Chinese)何永强, 吴姗, 鲁兴萌, 邱海洪, 帅江冰, 张晓峰, 王素华, 徐国群, 李光才, 董强. 不同DNA抽提方法对普通PCR和实时荧光定量PCR方法检测家蚕微孢子虫的影响. 昆虫学报, 2011, 54(11):1329-1334.
    [50] Zhang HY, Wan M, Fei C, Qian YH, Lu XM. Clone and phylogenetic analysis of partial α-tubulin gene of Nosema bombycis (Zhejiang Strain). Science of Sericulture, 2007, 33(1):49-56. (in Chinese)张海燕, 万淼, 费晨, 钱永华, 鲁兴萌. 家蚕微孢子虫(浙江株)α-微管蛋白基因部分片段的克隆及系统发育分析. 蚕业科学, 2007, 33(1):49-56.
    [51] Chen X, Huang KW, Shen ZY, Wang HL, Huang JT, Zhuang M, Feng XL, Lu CD. Studies on PCR inspection technique of Nosema bombycis. Canye Kexue, 1996, 22(4):229-234. (in Chinese)陈秀, 黄可威, 沈中元, 王红林, 黄君霆, 庄敏, 冯晓黎, 陆长德. 家蚕微粒子病的PCR诊断技术研究. 蚕业科学, 1996, 22(4):229-234.
    [52] Akiyoshi DE, Morrison HG, Lei S, Feng XC, Zhang QS, Corradi N, Mayanja H, Tumwine JK, Keeling PJ, Weiss LM, Tzipori S. Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathogens, 2009, 5(1):e1000261.
    [53] James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Current Biology, 2013, 23(16):1548-1553.
    [54] Morsy K, Bashtar AR, Abdel-Ghaffar F, Al-Quraishy S. Morphological and phylogenetic description of a new xenoma-inducing microsporidian, Microsporidium aurata nov. sp., parasite of the gilthead seabream Sparus aurata from the Red Sea. Parasitology Research, 2013, 112(11):3905-3915.
    [55] Ndikumana S, Pelin A, Williot A, Sanders JL, Kent M, Corradi N. Genome analysis of Pseudoloma neurophilia:A microsporidian parasite of zebrafish (Danio rerio). Journal of Eukaryotic Microbiology, 2017, 64(1):18-30.
    [56] Wu ZL, Tan XH, Pan GQ, Li YH, Zhou ZY. Extraction of spore wall proteins of Nosema bombycis with improved methods. Science of Sericulture, 2007, 33(1):62-66. (in Chinese)吴正理, 谭小辉, 潘国庆, 李艳红, 周泽扬. 家蚕微孢子虫(Nosema bombycis)孢壁蛋白提取方法的优化研究. 蚕业科学, 2007, 33(1):62-66.
    [57] Tan XH, Pan GQ, Wu ZL, Li YH, Zhang RZ, Xu JS, Zhou ZY. Relationship between the germination and spore wall proteins in Nosema bombycis. Acta Zoologica Sinica, 2008, 54(6):1068-1074. (in Chinese)谭小辉, 潘国庆, 吴正理, 李艳红, 张瑞芝, 许金山, 周泽扬. 家蚕微孢子虫孢壁蛋白与其发芽的相关性. 动物学报, 2008, 54(6):1068-1074.
    [58] Rossi P, La Rosa G, Ludovisi A, Tamburrini A, Morales MAG, Pozio E. Identification of a human isolate of Encephalitozoon cuniculi type I from Italy. International Journal for Parasitology, 1998, 28(9):1361-1366.
    [59] Zhang RZ, Xiang H, Pan GQ, Li T, Zhou ZY. Comparison of the codon bias between two microsporidian genomes. Newsletter of Sericultural Science, 2011, 31(1):1-8. (in Chinese)张瑞芝, 向恒, 潘国庆, 李田, 周泽扬. 两种微孢子虫全基因组中密码子偏好性比较. 蚕学通讯, 2011, 31(1):1-8.
    [60] Wiredu BD, Jaroenlak P, Prachumwat A, Williams TA, Bateman KS, Itsathitphaisarn O, Sritunyalucksana K, Paszkiewicz KH, Moore KA, Stentiford GD, Williams BAP. Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia. Environmental Microbiology, 2017, 19(5):2077-2089.
    [61] Xu JS, He Q, Ma ZG, Li T, Zhang XY, Debrunner-Vossbrinck BA, Zhou ZY, Vossbrinck CR. The genome of Nosema sp. Isolate YNPr:A comparative analysis of genome evolution within the Nosema/Vairimorpha clade. PLoS One, 2016, 11(9):e0162336.
    [62] Liu H, Chen BS, Hu SR, Liang XL, Lu XM, Shao YQ. Quantitative proteomic analysis of germination of Nosema bombycis spores under extremely alkaline conditions. Frontiers in Microbiology, 2016, 7:1459.
    [63] Liu H, Li MQ, He XY, Cai SF, He XK, Lu XM. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochimica et Biophysica Sinica(Shanghai), 2016, 48(3):246-256.
    [64] Yue YJ, Tang XD, Xu L, Yan W, Li QL, Xiao SY, Fu XL, Wang W, Li N, Shen ZY. Early responses of silkworm midgut to microsporidium infection-a digital gene expression analysis. Journal of Invertebrate Pathology, 2015, 124:6-14.
    [65] Ma ZG, Li CF, Pan GQ, Li ZH, Han B, Xu JS, Lan XQ, Chen J, Yang DL, Chen QM, Sang Q, Ji XC, Li T, Long MX, Zhou ZY. Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis. PLoS One, 2013, 8(12):e84137.
    [66] Zheng LP, Yu M, Zou XY, Hou L. Function of Gram-negtive binding proteins and peptidoglycan-recognition proteins in invertebrate innate immune response. Chinese Journal of Microecology, 2010, 22(2):171-174. (in Chinese)郑路平, 于淼, 邹向阳, 侯林. 革兰阴性菌结合蛋白(Toll/GNBPs)和肽聚糖识别蛋白(PGRPs)在无脊椎动物先天免疫应答中的作用. 中国微生态学杂志, 2010, 22(2):171-174.
    [67] Sun Y, Jiang YR, Wang Y, Li XS, Yang RS, Yu ZG, Qin L. The toll signaling pathway in the chinese oak silkworm, Antheraea pernyi:Innate immune responses to different microorganisms. PLoS One, 2016, 11(8):e0160200.
    [68] Tian L, Guo EN, Diao YP, Zhou S, Peng Q, Cao Y, Ling EJ, Li S. Genome-wide regulation of innate immunity by juvenile hormone and 20-hydroxyecdysone in the Bombyx fat body. BMC Genomics, 2010, 11:549.
    [69] Chaimanee V, Chantawannakul P, Chen YP, Evans JD, Pettis JS. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 2012, 58(8):1090-1095.
    [70] Huang SK, Lu XM. Comparative study on the infectivity and spore surface protein of Nosema bombycis and its morphological variant strain. Scientia Agricultura Sinica, 2004, 37(11):1682-1687. (in Chinese)黄少康, 鲁兴萌. 家蚕微粒子虫(Nosema bombycis)与其形态变异株的侵染性及孢子表面蛋白的比较研究. 中国农业科学, 2004, 37(11):1682-1687.
    [71] Wu XX, Feng ZZ, Qiu HH, Cai SF, Li MQ, Lu XM. Phagocytosis of Trichoplusia ni cultured cells to Nosema bombycis and the relationship with spore wall proteins. Science of Sericulture, 2010, 36(3):447-451. (in Chinese)吴晓霞, 冯真珍, 邱海洪, 蔡顺风, 李明乾, 鲁兴萌. 粉纹夜蛾培养细胞对家蚕微孢子虫的吞噬及与孢壁蛋白的关系. 蚕业科学, 2010, 36(3):447-451.
    [72] Li YH, Tao ML, Ma FP, Pan GQ, Zhou ZY, Wu ZL. A monoclonal antibody that tracks endospore formation in the microsporidium Nosema bombycis. PLoS One, 2015, 10(3):e0121884.
    [73] Tang XD, Hou JG, Fu XL, Xu L, Shen ZY. Differential proteomic analysis of two pathogenic microsporidia, Nosema bombycis and Endoreticulatus sp. Zhenjiang isolated from silkworm, Bombyx mori. Science of Sericulture, 2014, 40(6):1044-1054. (in Chinese)唐旭东, 候建革, 付绪亮, 徐莉, 沈中元. 2种家蚕病原性微孢子虫的蛋白质组差异研究. 蚕业科学, 2014, 40(6):1044-1054.
    [74] Gao YZ, Huang KW, Dai ZY, Zhang SQ. Studies on sporal protein chemical properties of microsporidias pathogenic to silkworm, Bombyx mori. Science of Sericulture, 1999, 25(2):82-91. (in Chinese)高永珍, 黄可威, 戴祝英, 张双全. 家蚕病原性微孢子虫的蛋白质化学性质的研究. 蚕业科学, 1999, 25(2):82-91.
    Cited by
Get Citation

Xili Liang, Xingmeng Lu, Yongqi Shao. Advances in studies on Lepidoptera microsporidium pathogen. [J]. Acta Microbiologica Sinica, 2018, 58(6): 1064-1076

Copy
Share
Article Metrics
  • Abstract:1210
  • PDF: 2599
  • HTML: 822
  • Cited by: 0
History
  • Received:October 08,2017
  • Revised:December 06,2017
  • Online: June 01,2018
Article QR Code