Advances in interactions between gut microbiota and mitochondria
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The relationship between gut microbiota and mitochondria is very close. On the one hand, intestinal microorganisms can directly or indirectly through the digestion of nutrients in food to produce metabolites such as short-chain fatty acids, hydrogen sulfide and nitric oxide, affect the energy metabolism process associated with mitochondria, regulate mitochondrial reactive oxygen species production, and regulate mitochondria and even the entire body's immune response. On the other hand, intestinal cell mitochondrial dysfunction and mitochondrial genome genetic variation also affect the composition and function of the gut microbiota. In this paper, we summarized recent advances in the relationship between gut microbiota and mitochondria. It provides a theoretical basis for targeting the intestinal flora and mitochondria to regulate intestinal health.

    Reference
    [1] Wang A, Keita AV, Phan V, McKay CM, Schoultz I, Lee J, Murphy MP, Fernando M, Ronaghan N, Balce D, Yates R, Dicay M, Beck PL, MacNaughton WK, Söderholm JD, McKay DM. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. The American Journal of Pathology, 2014, 184(9):2516-2527.
    [2] Di Meo I, Lamperti C, Tiranti V. Mitochondrial diseases caused by toxic compound accumulation:from etiopathology to therapeutic approaches. EMBO Molecular Medicine, 2015, 7(10):1257-1266.
    [3] Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728):1635-1638.
    [4] Jacouton E, Mach N, Cadiou J, Lapaque N, Clément K, Doré J, van Hylckama Vlieg JET, Smokvina T, Blottière HM. Lactobacillus rhamnosus CNCMI-4317 modulates Fiaf/Angptl4 in intestinal epithelial cells and circulating level in mice. PLoS One, 2015, 10(10):e0138880.
    [5] Donohoe DR, Garge N, Zhang XX, Sun W, O'Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabolism, 2011, 13(5):517-526.
    [6] Blachier F, Beaumont M, Andriamihaja M, Davila AM, Lan A, Grauso M, Armand L, Benamouzig R, Tomé D. Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. The American Journal of Pathology, 2017, 187(3):476-486.
    [7] Santhanam S, Venkatraman A, Ramakrishna BS. Impairment of mitochondrial acetoacetyl CoA thiolase activity in the colonic mucosa of patients with ulcerative colitis. Gut, 2007, 56(11):1543-1549.
    [8] Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology, 2015, 11(10):577-591.
    [9] Kimura I, Inoue D, Hirano K, Tsujimoto G. The SCFA receptor GPR43 and energy metabolism. Frontiers in Endocrinology, 2014, 5:85.
    [10] Trinchese G, Cavaliere G, Canani RB, Matamoros S, Bergamo P, de Filippo C, Aceto S, Gaita M, Cerino P, Negri R, Greco L, Cani PD, Mollica MP. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. The Journal of Nutritional Biochemistry, 2015, 26(11):1136-1146.
    [11] Mimoun S, Andriamihaja M, Chaumontet C, Atanasiu C, Benamouzig R, Blouin JM, Tomé D, Bouillaud F, Blachier F. Detoxification of H2S by differentiated colonic epithelial cells:implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxidants & Redox Signaling, 2012, 17(1):1-10.
    [12] Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxidants & Redox Signaling, 2010, 12(1):1-13.
    [13] Chen X, Liu XS. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB. Journal of Zhejiang University-Science B, 2016, 17(3):209-217.
    [14] Beaumont M, Andriamihaja M, Lan A, Khodorova N, Audebert M, Blouin JM, Grauso M, Lancha L, Benetti PH, Benamouzig R, Tomé D, Bouillaud F, Davila AM, Blachier F. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide:The adaptive response. Free Radical Biology and Medicine, 2016, 93:155-164.
    [15] Vermeiren J, Van de Wiele T, Van Nieuwenhuyse G, Boeckx P, Verstraete W, Boon N. Sulfide-and nitrite-dependent nitric oxide production in the intestinal tract. Microbial Biotechnology, 2012, 5(3):379-387.
    [16] Saint-Georges-Chaumet Y, Edeas M. Microbiota-mitochondria inter-talk:consequence for microbiota-host interaction. Pathogens and Disease, 2016, 74(1):ftv096.
    [17] Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens, 2014, 3(1):14-24.
    [18] Nie YF, Hu J, Yan XH. Cross-talk between bile acids and intestinal microbiota in host metabolism and health. Journal of Zhejiang University-Science B, 2015, 16(6):436-446.
    [19] Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap-bile acids in metabolic control. Nature Reviews Endocrinology, 2014, 10(8):488-498.
    [20] Kazgan N, Metukuri MR, Purushotham A, Lu J, Rao A, Lee S, Pratt-Hyatt M, Lickteig A, Csanaky IL, Zhao YM, Dawson PA, Li XL. Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1α-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology, 2014, 146(4):1006-1016.
    [21] Meissner M, Lombardo E, Havinga R, Tietge UJF, Kuipers F, Groen AK. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis, 2011, 218(2):323-329.
    [22] Clark A, Mach N. The crosstalk between the gut microbiota and mitochondria during exercise. Frontiers in Physiology, 2017, 8:319.
    [23] Crane JD, Abadi A, Hettinga BP, Ogborn DI, MacNeil LG, Steinberg GR, Tarnopolsky MA. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle. PLoS One, 2013, 8(12):e81879.
    [24] Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, de Pinho RA. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470(7334):359-365.
    [25] Sahin E, de Pinho RA. Axis of ageing:telomeres, p53 and mitochondria. Nature Reviews Molecular Cell Biology, 2012, 13(6):397-404.
    [26] Emre Y, Nübel T. Uncoupling protein UCP2:when mitochondrial activity meets immunity. FEBS Letters, 2010, 584(8):1437-1442.
    [27] Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science, 2011, 333(6046):1109-1112.
    [28] Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang YS, Fitzgerald KA, Underhill DM, Town T, Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3):401-414.
    [29] de Zoete MR, Flavell RA. Interactions between Nod-like receptors and intestinal bacteria. Frontiers in Immunology, 2013, 4:462.
    [30] Weissig V, Guzman-Villanueva D. Nanocarrier-based antioxidant therapy:promise or delusion? Expert Opinion on Drug Delivery, 2015, 12(11):1783-1790.
    [31] Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews, 2009, 22(2):240-273.
    [32] Lobet E, Letesson JJ, Arnould T. Mitochondria:a target for bacteria. Biochemical Pharmacology, 2015, 94(3):173-185.
    [33] Czyż DM, Potluri LP, Jain-Gupta N, Riley SP, Martinez JJ, Steck TL, Crosson S, Shuman HA, Gabay JE. Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. mBio, 2014, 5(4):e01534-14.
    [34] Garone C, Tadesse S, Hirano M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain:a Journal of Neurology, 2011, 134(11):3326-3332.
    [35] Gessner BD, Gillingham MB, Wood T, Koeller DM. Association of a genetic variant of carnitine palmitoyltransferase 1A with infections in Alaska Native children. The Journal of Pediatrics, 2013, 163(6):1716-1721.
    [36] Ma J, Coarfa C, Qin X, Bonnen PE, Milosavljevic A, Versalovic J, Aagaard K. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics, 2014, 15:257.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Xiawei Zhang, Chunlong Mu, Weiyun Zhu. Advances in interactions between gut microbiota and mitochondria. [J]. Acta Microbiologica Sinica, 2018, 58(11): 1908-1915

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 29,2018
  • Revised:July 11,2018
  • Online: November 06,2018
Article QR Code