Advance of the diversity of bacterial quorum sensing and quorum quenching
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [58]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Quorum sensing (QS) is cell-density dependent cell-to-cell communication in bacteria. In this process, bacteria secrete and recognize the QS signals, and then coordinate the gene expressions in group level for gene transferring, virulence factor secretion, spore production, biofilm formation and so on. Interfering with any part of the process could block QS. Quorum quenching (QQ) is one of the important strategies for the control of pathogenicity, prevention of spoilage and inhibition of biofilm pollution. In this paper, according to the principal axis of secretion-recognition-response of quorum-sensing signals, bacterial QS network was divided into three types:hierarchical, parallel and competitive ones. Firstly, their characteristics were elaborated. Then, the strategies of QQ containing signal competition, signal degradation, and receptors/key proteins activation or inhibition as well as their applications were discussed. Finally, the advance for QS research was prospected. This review was beneficial to enrich the knowledge of bacteria QS and promote the application of QQ.

    Reference
    [1] Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nature Reviews Microbiology, 2016, 14(9):576-588.
    [2] Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathogens, 2017, 13(7):e1006504.
    [3] Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680):313-320.
    [4] Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O'Gara F. Coumarin:a novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 2018, 102(5):2063-2073.
    [5] Wang JF, Ding LL, Li K, Huang H, Hu HD, Geng JJ, Xu K, Ren HQ. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms. Science of the Total Environment, 2018, 612:405-414.
    [6] Wang MZ, Lai BM, Dandekar AA, Yang YS, Li N, Yin J, Shen DS. Nitrogen-source stabilization of quorum sensing in the Pseudomonas aeruginosa bioaugmentation strain SD-1. Applied and Environmental Microbiology, 2017, 83(16):AEM. 00870-17.
    [7] Lai BM, Zhang K, Shen DS, Wang MZ, Shentu JL, Li N. Control of the pollution of antibiotic resistance genes in soils by quorum sensing inhibition. Environmental Science and Pollution Research, 2017, 24(6):5259-5267.
    [8] Kalia VC. Quorum sensing inhibitors:an overview. Biotechnology Advances, 2013, 31(2):224-245.
    [9] Singh PK, Yadav VK, Kalia M, Dohare S, Sharma D, Agarwal V. Pseudomonas aeruginosa auto inducer3-oxo-C12-HSL exerts bacteriostatic effect and inhibits Staphylococcus epidermidis biofilm. Microbial Pathogenesis, 2017, 110:612-619.
    [10] Lai BM, Yan HC, Wang MZ, Li N, Shen DS. A common evolutionary pathway for maintaining quorum sensing in Pseudomonas aeruginosa. Journal of Microbiology, 2018, 56(2):83-89.
    [11] Lee J, Zhang LH. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 2015, 6(1):26-41.
    [12] McGlacken GP, McSweeney CM, O'Brien T, Lawrence SE, Elcoate CJ, Reen FJ, O'Gara F. Synthesis of 3-halo-analogues of HHQ, subsequent cross-coupling and first crystal structure of Pseudomonas quinolone signal (PQS). Tetrahedron Letters, 2010, 51(45):5919-5921.
    [13] Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP, Morrissey JP, O'Gara F. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiology Ecology, 2011, 77(2):413-428.
    [14] Lee J, Wu JE, Deng YY, Wang J, Wang C, Wang JH, Chang CQ, Dong YH, Williams P, Zhang LH. A cell-cell communication signal integrates quorum sensing and stress response. Nature Chemical Biology, 2013, 9(5):339-343.
    [15] Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong XL, Hider RC, Cornelis P, Cámara M, Williams P. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chemistry & Biology, 2007, 14(1):87-96.
    [16] Xiao GP, He JX, Rahme LG. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology, 2006, 152(6):1679-1686.
    [17] Mlynek KD, Sause WE, Moormeier DE, Sadykov MR, Hill KR, Torres VJ, Bayles KW, Brinsmade SR. Nutritional regulation of the Sae two-component system by CodY in Staphylococcus aureus. Journal of Bacteriology, 2018, 200(8):e00012-18.
    [18] Giraudo AT, Cheung AL, Nagel R. The sae locus of Staphylococcus aureus controls exoprotein synthesis at the transcriptional level. Archives of Microbiology, 1997, 168(1):53-58.
    [19] Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl) homoserine lactone and N-hexanoylhomoserine lactone. Journal of Bacteriology, 2001, 183(12):3537-3547.
    [20] Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. Journal of Bacteriology, 2004, 186(20):6902-6914.
    [21] Lu RF, Osei-Adjei G, Huang XX, Zhang YQ. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios. Future Microbiology, 2018, 13(3):383-391.
    [22] Ruwandeepika HAD, Karunasagar I, Bossier P, Defoirdt T. Expression and quorum sensing regulation of Type Ⅲ secretion system genes of Vibrio harveyi during infection of Gnotobiotic Brine Shrimp. PLoS One, 2015, 10(12):e0143935.
    [23] Jung SA, Chapman CA, Ng WL. Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathogens, 2015, 11(4):e1004837.
    [24] Lorenz N, Shin JY, Jung K. Activity, abundance, and localization of quorum sensing receptors in Vibrio harveyi. Frontiers in Microbiology, 2017, 8:634.
    [25] Hurley A, Bassler BL. Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in Vibrio cholerae. PLoS Genetics, 2017, 13(5):e1006826.
    [26] Omony J, de Jong A, Krawczyk AO, Eijlander RT, Kuipers OP. Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens:a transcriptomic model. Microbial Genomics, 2018, 4(2):e000157.
    [27] Grossman AD. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annual Review of Genetics, 1995, 29:477-508.
    [28] Okada M, Sato I, Cho SJ, Iwata H, Nishio T, Dubnau D, Sakagami Y. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nature Chemical Biology, 2005, 1(1):23-24.
    [29] Gubaev A, Hilbert M, Klostermeier D. The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32):13278-13283.
    [30] Fujiya M, Musch MW, Nakagawa Y, Hu SE, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host & Microbe, 2007, 1(4):299-308.
    [31] Parashar V, Aggarwal C, Federle MJ, Neiditch MB. Rgg protein structure-function and inhibition by cyclic peptide compounds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16):5177-5182.
    [32] Junges R, Salvadori G, Shekhar S, Åmdal HA, Periselneris JN, Chen T, Brown JS, Petersen FC. A quorum-sensing system that regulates Streptococcus pneumoniae biofilm formation and surface polysaccharide production. mSphere, 2017, 2(5):e00324-17.
    [33] Khan MSA, Zahin M, Hasan S, Husain FM, Ahmad I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Letters in Applied Microbiology, 2009, 49(3):354-360.
    [34] Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Applied and Environmental Microbiology, 2009, 75(1):45-53.
    [35] Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T. So different and still so similar:the plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals. Communicative & Integrative Biology, 2016, 9(2):e1156832.
    [36] Kim HS, Lee SH, Byun Y, Park HD. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Scientific Reports, 2015, 5:8656.
    [37] Sheffield WP, Eltringham-Smith LJ, Bhakta V. Fusion to human serum albumin extends the circulatory half-life and duration of antithrombotic action of the kunitz protease inhibitor domain of protease nexin 2. Cellular Physiology and Biochemistry, 2018, 45(2):772-782.
    [38] Liu HB, Lee JH, Kim JS, Park S. Inhibitors of the Pseudomonas aeruginosa quorum-sensing regulator, QscR. Biotechnology and Bioengineering, 2010, 106(1):119-126.
    [39] Bobadilla Fazzini RA, Skindersoe ME, Bielecki P, Puchalka J, Givskov M, Martins dos Santos VAP. Protoanemonin:a natural quorum sensing inhibitor that selectively activates iron starvation response. Environmental Microbiology, 2013, 15(1):111-120.
    [40] Persson T, Hansen TH, Rasmussen TB, Skindersø ME, Givskov M, Nielsen J. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Organic & Biomolecular Chemistry, 2005, 3(2):253-262.
    [41] Maisuria VB, Lopez-de Los Santos Y, Tufenkji N, Déziel E. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific Reports, 2016, 6:30169.
    [42] Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, Henke BR, Smith CD, Bassler BL. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. Journal of Biological Chemistry, 2017, 292(10):4064-4076.
    [43] Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai SD, Patil BS. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology, 2011, 157(1):99-110.
    [44] Calfee MW, Coleman JP, Pesci EC. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20):11633-11637.
    [45] Chen TT, Sheng JY, Fu YH, Li MH, Wang JS, Jia AQ. 1H NMR-based global metabolic studies of Pseudomonas aeruginosa upon exposure of the quorum sensing inhibitor resveratrol. Journal of Proteome Research, 2017, 16(2):824-830.
    [46] Furiga A, Lajoie B, El Hage S, Baziard G, Roques C. Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrobial Agents and Chemotherapy, 2016, 60(3):1676-1686.
    [47] Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One, 2014, 9(4):e93414.
    [48] Nielsen A, Månsson M, Bojer MS, Gram L, Larsen TO, Novick RP, Frees D, Frøkiær H, Ingmer H. Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils. PLoS ONE, 2014, 9(1):e84992.
    [49] Daly SM, Elmore BO, Kavanaugh JS, Triplett KD, Figueroa M, Raja HA, El-Elimat T, Crosby HA, Femling JK, Cech NB, Horswill AR, Oberlies NH, Hall PR. ω-hydroxyemodin limits Staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrobial Agents and Chemotherapy, 2015, 59(4):2223-2235.
    [50] Jakobsen TH, Warming AN, Vejborg RM, Moscoso JA, Stegger M, Lorenzen F, Rybtke M, Andersen JB, Petersen R, Andersen PS, Nielsen TE, Tolker-Nielsen T, Filloux A, Ingmer H, Givskov M. A broad range quorum sensing inhibitor working through sRNA inhibition. Scientific Reports, 2017, 7(1):9857.
    [51] Tan SYY, Liu Y, Chua SL, Vejborg RM, Jakobsen TH, Chew SC, Li YY, Nielsen TE, Tolker-Nielsen T, Yang L, Givskov M. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound iberin on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2014, 58(11):6648-6659.
    [52] Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, González JE, Haines DC. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry, 2007, 46(50):14429-14437.
    [53] Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiology Ecology, 2011, 75(2):205-217.
    [54] Kelly RC, Bolitho ME, Higgins DA, Lu WY, Ng WL, Jeffrey PD, Rabinowitz JD, Semmelhack MF, Hughson FM, Bassler BL. The Vibrio cholerae quorum-sensing autoinducer CAI-1:analysis of the biosynthetic enzyme CqsA. Nature Chemical Biology, 2009, 5(12):891-895.
    [55] Bolitho ME, Perez LJ, Koch MJ, Ng WL, Bassler BL, Semmelhack MF. Small molecule probes of the receptor binding site in the Vibrio cholerae CAI-1 quorum sensing circuit. Bioorganic & Medicinal Chemistry, 2011, 19(22):6906-6918.
    [56] Ng WL, Perez L, Cong JP, Semmelhack MF, Bassler BL. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in Vibrios. PLoS Pathogens, 2012, 8(6):e1002767.
    [57] Hema M, Balasubramanian S, Princy SA. Meddling Vibrio cholerae murmurs:a neoteric advancement in Cholera research. Indian Journal of Microbiology, 2015, 55(2):121-130.
    [58] Aggarwal C, Jimenez JC, Lee H, Chlipala GE, Ratia K, Federle MJ. Identification of quorum-sensing inhibitors disrupting signaling between Rgg and short hydrophobic peptides in Streptococci. mBio, 2015, 6(3):e00393-15.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Feng Sun, Huicong Yan, Meizhen Wang. Advance of the diversity of bacterial quorum sensing and quorum quenching. [J]. Acta Microbiologica Sinica, 2019, 59(3): 454-467

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 20,2018
  • Revised:September 27,2018
  • Online: March 01,2019
Article QR Code