Research progress of human intestinal segmented filamentous bacteria
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Intestinal Segmented Filamentous Bacteria (SFB) is a Gram-positive Clostridium spp. with selective colonization of species, as shown by experiments. SFB mainly colonize on the surface of intestinal epithelial cells at the end of the ileum, to regulate the maturation of host immune system, stimulate the specific differentiation of CD4+ Th17 cells and promote the secretion of intestinal surface immunoglobulin A (sIgA). SFB play very important roles in preventing pathogenic microbial infection and induction of occurrence and development of autoimmune diseases. Although SFB can be detected in many vertebrates, few studies have been reported on human SFB. Studies have shown that SFB can be detected in human intestinal samples, and the investigation of clinical samples shows that there is a certain correlation of SFB in human intestinal tract with immune regulation and disease symptoms. However, due to the extremely low abundance of SFB in human intestinal tract and the possible existence of different SFB strains in the same individual, isolation and pure culture of SFB single bacteria are still the only way to further study the immune regulation function of human SFB.

    Reference
    [1] Davis CP, Savage DC. Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract. Infection and Immunity, 1974, 10(4):948-956.
    [2] Klaasen HL, Van der Heijden PJ, Stok W, Poelma FG, Koopman JP, Van Den Brink ME, Bakker MH, Eling WM, Beynen AC. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infection and Immunity, 1993, 61(1):303-306.
    [3] Tajima K, Ohmori H, Tohno M, Ohtsu H, Tsukahara T, Aminov R. Segmented filamentous bacteria are a major group in terminal ileum of piglets. Anaerobe, 2013, 23:109-111.
    [4] Garland CD, Lee A, Dickson MR. Segmented filamentous bacteria in the rodent small intestine:Their colonization of growing animals and possible role in host resistance to Salmonella. Microbial Ecology, 1982, 8(2):181-190.
    [5] Liao NB, Yin YS, Sun GC, Xiang C, Liu DH, Yu HD, Wang X. Colonization and distribution of segmented filamentous bacteria (SFB) in chicken gastrointestinal tract and their relationship with host immunity. FEMS Microbiology Ecology, 2012, 81(2):395-406.
    [6] Jiang HQ, Bos NA, Cebra JJ. Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups. Infection and Immunity, 2001, 69(6):3611-3617.
    [7] Tannock GW, Miller JR, Savage DC. Host specificity of filamentous, segmented microorganisms adherent to the small bowel epithelium in mice and rats. Applied and Environmental Microbiology, 1984, 47(2):441-442.
    [8] Allen PC. Comparative study of long, segmented, filamentous organisms in chickens and mice. Laboratory Animal Science, 1992, 42(6):542-547.
    [9] Ivanov, Ⅱ, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei DG, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 2009, 139(3):485-498.
    [10] Goto Y, Panea C, Nakato G, Cebula A, Lee C, Diez MG, Laufer TM, Ignatowicz L, Ivanov Ⅱ. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity, 2014, 40(4):594-607.
    [11] Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity, 2009, 31(4):677-689.
    [12] Sczesnak A, Segata N, Qin X, Gevers D, Petrosino JF, Huttenhower C, Littman DR, Ivanov Ⅱ. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host & Microbe, 2011, 10(3):260-272.
    [13] Kuwahara T, Ogura Y, Oshima K, Kurokawa K, Ooka T, Hirakawa H, Itoh T, Nakayama-Imaohji H, Ichimura M, Itoh K, Ishifune C, Maekawa Y, Yasutomo K, Hattori M, Hayashi T. The lifestyle of the segmented filamentous bacterium:a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Researchh:an International Journal for Rapid Publication of Reports on Genes and Genomes, 2011, 18(4):291-303.
    [14] Flannigan KL, Denning TL. Segmented filamentous bacteria-induced immune responses:a balancing act between host protection and autoimmunity. Immunology, 2018, 154(4):537-546.
    [15] Yang Y, Torchinsky MB, Gobert M, Xiong HH, Xu M, Linehan JL, Alonzo F, Ng C, Chen A, Lin XY, Sczesnak A, Liao JJ, Torres VJ, Jenkins MK, Lafaille JJ, Littman DR. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature, 2014, 510(7503):152-156.
    [16] Ladinsky MS, Araujo LP, Zhang X, Veltri J, Galan-Diez M, Soualhi S, Lee C, Irie K, Pinker EY, Narushima S, Bandyopadhyay S, Nagayama M, Elhenawy W, Coombes BK, Ferraris RP, Honda K, Iliev ID, Gao N, Bjorkman PJ, Ivanov Ⅱ. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science, 2019, 363(6431):eaat4042.
    [17] Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, Suda W, Imaoka A, Setoyama H, Nagamori T, Ishikawa E, Shima T, Hara T, Kado S, Jinnohara T, Ohno H, Kondo T, Toyooka K, Watanabe E, Yokoyama SI, Tokoro S, Mori H, Noguchi Y, Morita H, Ivanov Ⅱ, Sugiyama T, Nuñez G, Camp JG, Hattori M, Umesaki Y, Honda K. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell, 2015, 163(2):367-380.
    [18] Chen HH, Yin YS, Wang YL, Wang X, Xiang C. Host specificity of flagellins from segmented filamentous bacteria affects their patterns of interaction with mouse ileal mucosal proteins. Applied and Environmental Microbiology, 2017, 83(18):e01061-17.
    [19] Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, Blumenschein WM, Judo M, Ayanoglu G, McClanahan TK, Li XX, Cua DJ. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity, 2015, 43(4):727-738.
    [20] Maxwell JR, Zhang Y, Brown WA, Smith CL, Byrne FR, Fiorino M, Stevens E, Bigler J, Davis JA, Rottman JB, Budelsky AL, Symons A, Towne JE. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity, 2015, 43(4):739-750.
    [21] Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, Vikram A, Good M, Schoenborn AA, Bibby K, Montelaro RC, Metzger DW, Gulati AS, Kolls JK. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity, 2016, 44(3):659-671.
    [22] Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL. Gut immune maturation depends on colonization with a host-specific microbiota. Cell, 2012, 149(7):1578-1593.
    [23] Edelblum KL, Sharon G, Singh G, Odenwald MA, Sailer A, Cao S, Ravens S, Thomsen I, El Bissati K, McLeod R, Dong C, Gurbuxani S, Prinz I, Mazmanian SK, Turner JR. The microbiome activates CD4 T-cell-mediated immunity to compensate for increased intestinal permeability. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4(2):285-297.
    [24] Burgess SL, Buonomo E, Carey M, Cowardin C, Naylor C, Noor Z, Wills-Karp M, Petri Jr WA. Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis. mBio, 2014, 5(6):e01817-14.
    [25] Gauguet S, D'Ortona S, Ahnger-Pier K, Duan BY, Surana NK, Lu R, Cywes-Bentley C, Gadjeva M, Shan Q, Priebe GP, Pier GB. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infection and Immunity, 2015, 83(10):4003-4014.
    [26] McAleer JP, Nguyen NLH, Chen K, Kumar P, Ricks DM, Binnie M, Armentrout RA, Pociask DA, Hein A, Yu A, Vikram A, Bibby K, Umesaki Y, Rivera A, Sheppard D, Ouyang WJ, Hooper LV, Kolls JK. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome. Journal of Immunology, 2016, 197(1):97-107.
    [27] Teng F, Klinger CN, Felix KM, Bradley CP, Wu E, Tran NL, Umesaki Y, Wu HJJ. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's patch T follicular helper cells. Immunity, 2016, 44(4):875-888.
    [28] Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(S1):4615-4622.
    [29] Harley ITW, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M, Sheridan R, Xanthakos SA, Steinbrecher KA, Sartor RB, Kohli R, Karp CL, Divanovic S. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology, 2014, 59(5):1830-1839.
    [30] Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan TG, Longman RS, Honda K, Littman DR, Choi GB, Huh JR. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature, 2017, 549(7673):528-532.
    [31] Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, Yeon Kim J, Kim S, Kim H, Waisman A, Littman DR, Wickersham IR, Harnett MT, Huh JR, Choi GB. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature, 2017, 549(7673):482-487.
    [32] Klaasen HLBM, Koopman JP, Van Den Brink ME, Bakker MH, Poelma FGJ, Beynen AC. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Laboratory Animals, 1993, 27(2):141-150.
    [33] Yin YS, Wang Y, Zhu LY, Liu W, Liao NB, Jiang MZ, Zhu BL, Yu HD, Xiang C, Wang X. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. The ISME Journal, 2013, 7(3):615-621.
    [34] Jonsson H. Segmented filamentous bacteria in human ileostomy samples after high-fiber intake. FEMS Microbiology Letters, 2013, 342(1):24-29.
    [35] Chen B, Chen HH, Shu XL, Yin YS, Li J, Qin JJ, Chen LJ, Peng KR, Xu F, Gu WZ, Zhao H, Jiang LQ, Li LJ, Song J, Elitsur Y, Yu HD, Jiang MZ, Wang X, Xiang C. Presence of segmented filamentous bacteria in human children and its potential role in the modulation of human gut immunity. Frontiers in Microbiology, 2018, 9:1403.
    [36] Caselli M, Cassol F, Gentili V, Di Luca D. Genome sequences of segmented filamentous bacteria in animals:implications for human research. Gut Microbes, 2012, 3(5):401-405.
    [37] Zwirzitz B, Pinior B, Metzler-Zebeli B, Handler M, Gense K, Knecht C, Ladinig A, Dzieciol M, Wetzels SU, Wagner M, Schmitz-Esser S, Mann E. Microbiota of the gut-lymph node axis:depletion of mucosa-associated segmented filamentous bacteria and enrichment of Methanobrevibacter by colistin sulfate and linco-spectin in pigs. Frontiers in Microbiology, 2019, 10:599.
    [38] Caselli M, Tosini D, Gafà R, Gasbarrini A, Lanza G. Segmented filamentous bacteria-like organisms in histological slides of ileo-cecal valves in patients with ulcerative colitis. American Journal of Gastroenterology, 2013, 108(5):860-861.
    [39] Finotti A, Gasparello J, Lampronti I, Cosenza LC, Maconi G, Matarese V, Gentili V, Di Luca D, Gambari R, Caselli M. PCR detection of segmented filamentous bacteria in the terminal ileum of patients with ulcerative colitis. BMJ Open Gastroenterology, 2017, 4(1):e000172.
    [40] Chase DG, Erlandsen SL. Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum. Journal of Bacteriology, 1976, 127(1):572-583.
    [41] Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Research, 2012, 22(6):1107-1119.
    [42] Prakash T, Oshima K, Morita H, Fukuda S, Imaoka A, Kumar N, Sharma VK, Kim SW, Takahashi M, Saitou N, Taylor TD, Ohno H, Umesaki Y, Hattori M. Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation. Cell Host & Microbe, 2011, 10(3):273-284.
    [43] Schnupf P, Gaboriau-Routhiau V, Gros M, Friedman R, Moya-Nilges M, Nigro G, Cerf-Bensussan N, Sansonetti PJ. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature, 2015, 520(7545):99-103.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Huahai Chen, Liu Wu, Cheng Tang, Xin Wang, Yeshi Yin. Research progress of human intestinal segmented filamentous bacteria. [J]. Acta Microbiologica Sinica, 2019, 59(9): 1778-1785

Copy
Share
Article Metrics
  • Abstract:2122
  • PDF: 3103
  • HTML: 8381
  • Cited by: 0
History
  • Received:April 09,2019
  • Revised:June 22,2019
  • Online: August 29,2019
Article QR Code