Progress in microbial conversion of soy isoflavones
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [79]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Soy isoflavones are a group of secondary metabolites produced during the growth of soya plants and have various physiological functions, including antioxidative activity, anticarcinogenic activity, prevention of bone loss, and decreasing the morbidity of cardiovascular disease. It is known that after being absorbed, soy isoflavones are metabolized by intestinal microflora to different metabolites with higher or wider bioactivities in comparison to soy isoflavones. Therefore, the beneficial effects of soy isoflavones depend mainly on how soy isoflavones are metabolized by intestinal microflora rather than the total amount of soy isoflavones absorbed by individuals. This paper reviews the microbial bioconversion of soy isoflavones from numerous aspects, including the function and component of soy isoflavones, the absorption, degradation and isolation of soy isoflavones, the bioactivity and enhanced biosynthesis of the microbial metabolites of soy isoflavones. The present research state and existing problems are addressed. The trends in future development are prospected. Our purpose is to accelerate the research and development of the microbial metabolites of soy isoflavones.

    Reference
    [1] Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S. Bioavailability of soybean isoflavones depends upon gut microflora in women. The Journal of Nutrition, 1995, 125(9):2307-2315.
    [2] Chang YC, Nair MG. Metabolism of daidzein and genistein by intestinal bacteria. Journal of Natural Products, 1995, 58(12):1892-1896.
    [3] Walz E. Isoflavonund Saponin-Glucoside in Soja hispida. Justus Liebigs Annalen der Chemie, 1931, 489(1):118-155.
    [4] Wang HJ, Murphy PA. Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 1994, 42(8):1666-1673.
    [5] Eldridge AC, Kwolek WF. Soybean isoflavones:effect of environment and variety on composition. Journal of Agricultural and Food Chemistry, 1983, 31(2):394-396.
    [6] Deng H, Liu JY, Wang LS, Yin Q. Research on the antioxidative activity and mechanism of soybean isoflavones. Sichuan Animal & Veterinary Sciences, 2012, 39(2):32-34. (in Chinese) 邓卉, 刘进远, 汪林书, 殷勤. 大豆异黄酮发挥抗氧化作用的途径及机理研究. 四川畜牧兽医, 2012, 39(2):32-34.
    [7] Zheng X, Lee SK, Chun OK. Soy isoflavones and osteoporotic bone loss:a review with an emphasis on modulation of bone remodeling. Journal of Medicinal Food, 2016, 19(1):1-14.
    [8] Sathyapalan T, Aye M, Rigby AS, Thatcher NJ, Dargham SR, Kilpatrick ES, Atkin SL. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28(7):691-697.
    [9] Li WH. Study on antioxidation of genistein in mice. Anti-infection Pharmacy, 2014, 11(3):200-202. (in Chinese) 李蔚辉. 染料木素对小鼠抗氧化作用的研究. 抗感染药学, 2014, 11(3):200-202.
    [10] Andres A, Donovan SM, Kuhlenschmidt TB, Kuhlenschmidt MS. Isoflavones at concentrations present in soy infant formula inhibit rotavirus infection in vitro. The Journal of Nutrition, 2007, 137(9):2068-2073.
    [11] Aditya NP, Shim M, Lee I, Lee Y, Im MH, Ko S. Curcumin and genistein coloaded nanostructured lipid carriers:in vitro digestion and antiprostate cancer activity. Journal of Agricultural and Food Chemistry, 2013, 61(8):1878-1883.
    [12] Wei YK, Gamra I, Davenport A, Lester R, Zhao LJ, Wei YD. Genistein induces cytochrome P4501B1 gene expression and cell proliferation in human breast cancer MCF-7 cells. Journal of Environmental Pathology, Toxicology and Oncology, 2015, 34(2):153-159.
    [13] Wang HT, Shi SS, Li YX, Li HQ, Xie MJ. Study on anti-microbial activity of genistein and its mechanism. Acta Nutrimenta Sinica, 2008, 30(4):403-406, 409. (in Chinese) 王海涛, 石姗姗, 李银霞, 李化强, 谢明杰. 染料木素的抑菌活性及其机制的研究. 营养学报, 2008, 30(4):403-406, 409.
    [14] Kong D, Xing LN, Liu R, Jiang JJ, Wang WY, Shang LQ, Wei XT, Hao WD. Individual and combined developmental toxicity assessment of bisphenol A and genistein using the embryonic stem cell test in vitro. Food and Chemical Toxicology, 2013, 60:497-505.
    [15] Patel S, Hartman JA, Helferich WG, Flaws JA. Preconception exposure to dietary levels of genistein affects female reproductive outcomes. Reproductive Toxicology, 2017, 74:174-180.
    [16] Schroeter A, Aichinger G, Stornig K, Marko D. Impact of oxidative metabolism on the cytotoxic and genotoxic potential of genistein in human colon cancer cells. Molecular Nutrition & Food Research, 2019, 63(2):1800635e.
    [17] Ono M, Ejima K, Higuchi T, Takeshima M, Wakimoto R, Nakano S. Equol enhances apoptosis-inducing activity of genistein by increasing Bax/Bcl-xL expression ratio in MCF-7 human breast cancer cells. Nutrition and Cancer, 2017, 69(8):1300-1307.
    [18] King RA, Bursill DB. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. The American Journal of Clinical Nutrition, 1998, 67(5):867-872.
    [19] Sfakianos J, Coward L, Kirk M, Barnes S. Intestinal uptake and biliary excretion of the isoflavone genistein in rats. The Journal of Nutrition, 1997, 127(7):1260-1268.
    [20] Marrian GF, Haslewood GAD. Equol, a new inactive phenol isolated from the ketohydroxyoestrin fraction of mares' urine. Biochemical Journal, 1932, 26(4):1227-1232.
    [21] Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, Setchell KD. The identification of the weak oestrogen equol[7-hydroxy-3-(4'-hydroxyphenyl)chroman] in human urine. Biochemical Journal, 1982, 201(2):353-357.
    [22] Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C. A urinary profile study of dietary phytoestrogens, the identification and mode of metabolism of new isoflavonoids. The Journal of Steroid Biochemistry and Molecular Biology, 1995, 54(3/4):167-184.
    [23] Setchell KD, Borriello SP, Hulme P, Kirk DN, Axelson M. Nonsteroidal estrogens of dietary origin:possible roles in hormone-dependent disease. The American Journal of Clinical Nutrition, 1984, 40(3):569-578.
    [24] Franke AA, Lai JF, Halm BM. Absorption, distribution, metabolism, and excretion of isoflavonoids after soy intake. Archives of Biochemistry and Biophysics, 2014, 559:24-28.
    [25] Rowland IR, Wiseman H, Sanders TAB, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans:influence of habitual diet on equol production by the gut microflora. Nutrition and Cancer, 2000, 36(1):27-32.
    [26] Coldham NG, Howells LC, Santi A, Montesissa C, Langlais C, King LJ, Macpherson DD, Sauer MJ. Biotransformation of genistein in the rat:elucidation of metabolite structure by product ion mass fragmentology. The Journal of Steroid Biochemistry and Molecular Biology, 1999, 70(4/6):169-184.
    [27] Heinonen S, Wähälä K, Adlercreutz H. Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6'-OH-O-dma, and cis-4-OH-equol in human urine by gas chromatography-mass spectroscopy using authentic reference compounds. Analytical Biochemistry, 1999, 274(2):211-219.
    [28] Sepehr E, Robertson P, Gilani GS, Cooke G, Lau BP. An accurate and reproducible method for the quantitative analysis of isoflavones and their metabolites in rat plasma using liquid chromatography/mass spectrometry combined with photodiode array detection. Journal of AOAC International, 2006, 89(4):1158-1167.
    [29] Schoefer L, Mohan R, Braune A, Birringer M, Blaut M. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiology Letters, 2002, 208(2):197-202.
    [30] Wang XL, Kim KT, Lee JH, Hur HG, Kim SI. C-ring cleavage of isoflavones daidzein and genistein by a newly-isolated human intestinal bacterium Eubacterium ramulus Julong 601. Journal of Microbiology and Biotechnology, 2004, 14(4):766-771.
    [31] Wang XL, Hur HG, Lee JH, Kim KT, Kim SI. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Applied and Environmental Microbiology, 2005, 71(1):214-219.
    [32] Hur HG, Lay Jr JO, Beger RD, Freeman JP, Rafii F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Archives of Microbiology, 2000, 174(6):422-428.
    [33] Wang XL, Shin KH, Hur HG, Kim SI. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium. Journal of Biotechnology, 2005, 115(3):261-269.
    [34] Tamura M, Tsushida T, Shinohara K. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe, 2007, 13(1):32-35.
    [35] Zhou B, Meng JQ, Wang XL. Isolation, identification and biotransforming property of an isoflavone reducing bacterium isolated from rabbit intestinal microflora. Microbiology China, 2014, 41(11):2301-2309. (in Chinese) 周博, 孟建青, 王秀伶. 兔肠道大豆异黄酮还原菌株的分离鉴定及其转化特性. 微生物学通报, 2014, 41(11):2301-2309.
    [36] Minamida K, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. Journal of Bioscience and Bioengineering, 2006, 102(3):247-250.
    [37] Uchiyama S, Ueno T, Suzuki T. Identification of a newly isolated equol-producing lactic acid bacterium from the human feces. Journal of Intestinal Microbiology, 2007, 21(3):217-220.
    [38] Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(5):1221-1227.
    [39] Minamida K, Ota K, Nishimukai M, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K. Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(5):1238-1240.
    [40] Matthies A, Clavel T, Gütschow M, Engst W, Haller D, Blaut M, Braune A. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Applied and Environmental Microbiology, 2008, 74(15):4847-4852.
    [41] Yokoyama S, Suzuki T. Isolation and characterization of a novel equol-producing bacterium from human feces. Bioscience, Biotechnology, and Biochemistry, 2008, 72(10):2660-2666.
    [42] Yu ZT, Yao W, Zhu WY. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiology Letters, 2008, 282(1):73-80.
    [43] 王秀伶, 邵建柱, 王世英, 于飞, 张琪, 李朝东. 不动杆菌AUH-JLM455及其转化制备S-雌马酚的方法. 中国:CN101338294A. 2009-01-07.
    [44] Jin JS, Kitahara M, Sakamoto M, Hattori M, Benno Y. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(8):1721-1724.
    [45] Tamura M, Hori S, Nakagawa H. Lactobacillus collinoides JCM1123T:effects on mouse plasma cholesterol and isoflavonoids in the caecum. Antonie Van Leeuwenhoek, 2009, 96(4):621-626.
    [46] Tsuji H, Moriyama K, Nomoto K, Miyanaga N, Akaza H. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS. Archives of Microbiology, 2010, 192(4):279-287.
    [47] Guo YY, Huang YY, Ye J, Zhang XQ, Xiao MT. Screening and identification of a bacterium capable of converting daidzein to S-equol. Acta Microbiologica Sinica, 2012, 52(6):696-702. (in Chinese) 郭远洋, 黄雅燕, 叶静, 张学勤, 肖美添. 一株转化大豆苷元为S-雌马酚菌株的筛选和鉴定. 微生物学报, 2012, 52(6):696-702.
    [48] Li H, Zhou B, Wang XL. Bioconversion of daidzein by an anaerobic bacterium Eggerthella sp. AUH-Julong365 isolated from human feces. Journal of Agricultural University of Hebei, 2013, 36(3):61-65, 71. (in Chinese) 李慧, 周博, 王秀伶. 人肠道厌氧细菌菌株Eggerthella sp. AUH-Julong365对黄豆苷原的转化研究. 河北农业大学学报, 2013, 36(3):61-65, 71.
    [49] Jin JS, Nishihata T, Kakiuchi N, Hattori M. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biological and Pharmaceutical Bulletin, 2008, 31(8):1621-1625.
    [50] Matthies A, Blaut M, Braune A. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Applied and Environmental Microbiology, 2009, 75(6):1740-1744.
    [51] 王秀伶, 刘子光, 邵子强, 梁晓琳, 张红蕾, 郭常亮. 史雷克氏菌AUH-JLC159及其转化制备(-)-5-OH-雌马酚的方法. 中国:CN103275884A. 2013-09-04.
    [52] Hur HG, Beger RD, Heinze TM, Lay Jr JO, Freeman JP, Dore J, Rafii F. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein. Archives of Microbiology, 2002, 178(1):8-12.
    [53] Yu F, Wang SY, Li J, Zhang Q, Li CD, Wang XL. C-ring cleavage of isoflavone daidzein by a newly-isolated facultative Enterococcus hirae AUH-HM195 from Crossoptilon mantchuricum feces. Acta Microbiologica Sinica, 2009, 49(4):479-484. (in Chinese) 于飞, 王世英, 李佳, 张琪, 李朝东, 王秀伶. 兼性肠球菌Enterococcus hirae AUH-HM195对黄豆苷原的开环转化. 微生物学报, 2009, 49(4):479-484.
    [54] Li M, Li H, Zhang C, Wang XL, Chen BH, Hao QH, Wang SY. Enhanced biosynthesis of O-desmethylangolensin from daidzein by a novel oxygen-tolerant cock intestinal bacterium in the presence of atmospheric oxygen. Journal of Applied Microbiology, 2015, 118(3):619-628.
    [55] Sathyamoorthy N, Wang TTY. Differential effects of dietary phyto-oestrogens daidzein and equol on human breast cancer MCF-7 cells. European Journal of Cancer, 1997, 33(14):2384-2389.
    [56] Liang XL, Wang XL, Li Z, Hao QH, Wang SY. Improved in vitro assays of superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity of isoflavones and isoflavone metabolites. Journal of Agricultural and Food Chemistry, 2010, 58(22):11548-11552.
    [57] Liang XL, Li M, Li J, Wang XL. Equol induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells through the intrinsic pathway and the endoplasmic reticulum stress pathway. Anti-Cancer Drugs, 2014, 25(6):633-640.
    [58] Wilkins HM, Mahnken JD, Welch P, Bothwell R, Koppel S, Jackson RL, Burns JM, Swerdlow RH. A mitochondrial biomarker-based study of S-equol in Alzheimer's disease subjects:results of a single-arm, pilot trial. Journal of Alzheimer's Disease, 2017, 59(1):291-300.
    [59] Brotzu G, Fadda AM, Manca ML, Manca T, Marongiu F, Campisi M, Consolaro F. A liposome-based formulation containing equol, dihomo-γ-linolenic acid and propionyl-L-carnitine to prevent and treat hair loss:a prospective investigation. Dermatologic Therapy, 2019, 32(1):e12778.
    [60] Zhang CH, Wang XL, Liang XL, Zhang HL, Hao QH. Effects of (-)-5-hydroxy-equol on the lifespan and stress resistance of Caenorhabditis elegans. Journal of Chinese Pharmaceutical Sciences, 2014, 23(6):378-384.
    [61] Gao L, Wang KX, Zhang NN, Li JQ, Qin XM, Wang XL. 1H Nuclear Magnetic Resonance based metabolomics approach reveals the metabolic mechanism of (-)-5-hydroxy-equol against hepatocellular carcinoma cells in vitro. Journal of Proteome Research, 2018, 17(5):1833-1843.
    [62] Beck V, Rohr U, Jungbauer A. Phytoestrogens derived from red clover:an alternative to estrogen replacement therapy? The Journal of Steroid Biochemistry and Molecular Biology, 2005, 94(5):499-518.
    [63] Chin-Dusting JPF, Fisher LJ, Lewis TV, Piekarska A, Nestel PJ, Husband A. The vascular activity of some isoflavone metabolites:implications for a cardioprotective role. British Journal of Pharmacology, 2001, 133(4):595-605.
    [64] Jiang F, Jones GT, Husband AJ, Dusting GJ. Cardiovascular protective effects of synthetic isoflavone derivatives in apolipoprotein E-deficient mice. Journal of Vascular Research, 2003, 40(3):276-284.
    [65] Magee PJ, McGlynn H, Rowland IR. Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Letters, 2004, 208(1):35-41.
    [66] Ohtomo T, Uehara M, Peñalvo JL, Adlercreutz H, Katsumata SI, Suzuki K, Takeda K, Masuyama R, Ishimi Y. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. European Journal of Nutrition, 2008, 47(5):273-279.
    [67] Frankenfeld CL, Atkinson C, Wähälä K, Lampe JW. Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethylangolensin from the isoflavone daidzein. European Journal of Clinical Nutrition, 2014, 68(4):526-530.
    [68] Jia Y, Zhao LJ, Zhao XJ, Jia F, Wang XL. Extraction and monosaccharide component analysis of the exopolysaccharide from the anti-oxidative protective coat of the oxygen-tolerant mutant strain Aeroto-Niu-O16. Journal of Hebei Agricultural University, 2018, 41(3):77-83. (in Chinese) 贾扬, 赵亮杰, 赵晓佳, 贾璠, 王秀伶. 耐氧突变株Aeroto-Niu-O16抗氧化保护膜成分提取与单糖组分分析. 河北农业大学学报, 2018, 41(3):77-83.
    [69] Zhao H, Wang XL, Zhang HL, Li CD, Wang SY. Production of dihydrodaidzein and dihydrogenistein by a novel oxygen-tolerant bovine rumen bacterium in the presence of atmospheric oxygen. Applied Microbiology and Biotechnology, 2011, 92(4):803-813.
    [70] 王秀伶, 谢雁景, 杨露, 赵慧. 耐氧夏普氏菌及其在二氢大豆异黄酮有氧合成中的应用. 中国:CN104673722A. 2015-06-03.
    [71] Shimada Y, Yasuda S, Takahashi M, Hayashi T, Miyazawa N, Sato I, Abiru Y, Uchiyama S, Hishigaki H. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92. Applied and Environmental Microbiology, 2010, 76(17):5892-5901.
    [72] Shimada Y, Takahashi M, Miyazawa N, Ohtani T, Abiru Y, Uchiyama S, Hishigaki H. Identification of two novel reductases involved in equol biosynthesis in Lactococcus strain 20-92. Journal of Molecular Microbiology and Biotechnology, 2012, 21(3/4):160-172.
    [73] Schröder C, Matthies A, Engst W, Blaut M, Braune A. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Applied and Environmental Microbiology, 2013, 79(11):3494-3502.
    [74] Gao YN, Hao QH, Zhang HL, Zhou B, Yu XM, Wang XL. Reduction of soy isoflavones by use of Escherichia coli whole-cell biocatalyst expressing isoflavone reductase under aerobic conditions. Letters in Applied Microbiology, 2016, 63(2):111-116.
    [75] 王秀伶, 高雅宁, 于秀梅, 张红蕾. 爱格氏菌、S-雌马酚产生工程菌及其构建方法和应用. 中国:CN105861363A. 2016-08-17.
    [76] Lee PG, Kim J, Kim EJ, Jung EO, Pandey BP, Kim BG. P212A Mutant of dihydrodaidzein reductase enhances (S)-equol production and enantioselectivity in a recombinant Escherichia coli whole-cell reaction system. Applied and Environmental Microbiology, 2016, 82(7):1992-2002.
    [77] Lee PG, Kim J, Kim EJ, Lee SH, Choi KY, Kazlauskas RJ, Kim BG. Biosynthesis of (-)-5-hydroxy-equol and 5-hydroxy-dehydroequol from soy isoflavone, genistein using microbial whole cell bioconversion. ACS Chemical Biology, 2017, 12(11):2883-2890.
    [78] Kim M, Han J. Chiroptical study and absolute configuration of (-)-O-DMA produced from daidzein metabolism. Chirality, 2014, 26(9):434-437.
    [79] Gardana C, Canzi E, Simonetti P. R(-)-O-desmethylangolensin is the main enantiomeric form of daidzein metabolite produced by human in vitro and in vivo. Journal of Chromatography B, 2014, 953-954:30-37.
    Cited by
Get Citation

Xiaojia Zhao, Yicong Li, Xiuling Wang. Progress in microbial conversion of soy isoflavones. [J]. Acta Microbiologica Sinica, 2020, 60(2): 211-226

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 22,2019
  • Revised:July 14,2019
  • Online: February 13,2020
Article QR Code