Isolation of a high effective antagonistic bacterial strain YC16 against Sclerotinia sclerotiorum diseases in sunflower
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] To isolate antagonistic bacteria against Sclerotinia sclerotiorum diseases in sunflower. [Methods] Cellulose-degrading bacteria were isolated by CMC and wheat straw cellulose as sole carbon and energy source in mineral culture medium, then the ability of cellulose-degrading bacteria to suppress Sclerotinia sclerotiorum mycelium development was recorded under various conditions. The antagonistic spectrum of the isolate YC16 against pathogenic fungi was tested on PDYA petri-dishes, the suppressive ability of YC16 against Sclerotinia sclerotiorum was also observed using fresh detached leaves of sunflower and peat pot experiment. The effect of YC16 inoculation on plant growth promotion and Sclerotinia rot diseases prevention of sunflower was studied in pot and field experiment. [Results] YC16 was isolated and identified as Bacillus amyloliquefaciens. YC16 could suppress eight pathogenic fungi, including Sclerotium rolfsii, Fusarium solani, Fusarium oxysporum, Pyricularia oryzae, Phytophthora capsici, Fusarium sp., Fusarium oxysporum f. sp. cucumerinum Owen and Sclerotinia sclerotiorum. YC16 could inhibit S. sclerotiorum from infecting sunflower leaves by 80.42% and reduce the density of S. sclerotiorum mycelia by more than 50% on the surface of the Peat media compared with the control under pot condition. YC16 inoculation increased obviously the fresh biomass weight of sunflower by 54.9%. Under conventional chemical fertilizer application, YC16 inoculation increased sunflower yield by 24.4% to 30.2%, S. sclerotiorum diseases of sunflower was reduced by 39% to 100% through 3 year's field studies. [Conclusion] The isolate YC16 showed the potential for controlling sunflower Sclerotinia rot diseases and increasing sunflower yields as an efficient microbial resource for development of biocontrol agent.

    Reference
    [1] Dan JB, Kong DY, Liu SP, Gao FX, Yang S, Zhang J. Forecast for the occurrence of sunflower Sclerotinia sclerotiorum in Hetao irrigation district. Chinese Journal of Agrometeorology, 2012, 33(1):142-147. (in Chinese) 淡建兵, 孔德胤, 刘双平, 高飞翔, 杨松, 张静. 河套灌区向日葵菌核病发生程度预测预报. 中国农业气象, 2012, 33(1):142-147.
    [2] Zhao WQ. The mechanism of disease occurrence and integrated control technologies against sunflower Sclerotinia sclerotiorum. Agriculture & Technology, 2017, 37(16):58-59. (in Chinese) 赵伟权. 向日葵菌核病制病机理和综合防治技术. 农业与技术, 2017, 37(16):58-59.
    [3] Zhang SM, Jiang TR, Wang YX, Zhao XY, Zhang XC, Li J. Initial report on prevention and control effect of sunflower Sclerotinia sclerotiorum by Bacillus subtilis. Modernizing Agriculture, 2008, (11):1-2. (in Chinese) 张淑梅, 姜天瑞, 王玉霞, 赵晓宇, 张先成, 李晶. 枯草芽孢杆菌防治向日葵菌核病效果初报. 现代化农业, 2008, (11):1-2.
    [4] Zhang YM, Li XJ, Wang Y, Zhao J, Zhou HY. Bacterial strain S-16 suppressing sclerotial formation of Sclerotinia sclerotiorum. Chinese Journal of Biological Control, 2014, 30(1):121-127. (in Chinese) 张一名, 李小娟, 王颖, 赵君, 周洪友. 抑制向日葵核盘菌菌核形成的生防菌S-16的鉴定及其生防作用研究. 中国生物防治学报, 2014, 30(1):121-127.
    [5] Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research, 2018, 211:21-30.
    [6] Smolińska U, Kowalska B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum-a review. Journal of Plant Pathology, 2018, 100(1):1-12.
    [7] Kamal MM, Lindbeck KD, Savocchia S, Ash GJ. Biological control of sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathology, 2015, 64(6):1375-1384.
    [8] Dai YL, Pan YM, Fan M, Gan L, Gao ZM. Condition optimization for antibiotic substances produced by Bacillus subtilis strain RSS-1. Chinese Agricultural Science Bulletin, 2018, 34(3):51-57. (in Chinese) 代玉立, 潘月敏, 樊淼, 甘林, 高智谋. 枯草芽孢杆菌RSS-1菌株产生抗菌物质条件的优化. 中国农学通报, 2018, 34(3):51-57.
    [9] Chen SY, Yang BY, Gao MY, Dai SY. Inhibition of sclerotia formation of Sclerotinia sclerotiorum by Bacillus amyloliquefaciens. Chinese Journal of Applied & Environmental Biology, 2005, 11(3):373-376. (in Chinese) 陈士云, 杨宝玉, 高梅影, 戴顺英. 一株抑制油菜核盘菌菌核形成的解淀粉芽孢杆菌. 应用与环境生物学报, 2005, 11(3):373-376.
    [10] Nigris S, Baldan E, Tondello A, Zanella F, Vitulo N, Favaro G, Guidolin V, Bordin N, Telatin A, Barizza E, Marcato S, Zottini M, Squartini A, Valle G, Baldan B. Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera. BMC Microbiology, 2018, 18(1):133.
    [11] Kamal MM, Savocchia S, Lindbeck KD, Ash GJ. Biology and biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary in oilseed Brassicas. Australasian Plant Pathology, 2016, 45(1):1-14.
    [12] Kaushal M, Kumar A, Kaushal R. Bacillus pumilus strain YSPMK11 as plant growth promoter and bicontrol agent against Sclerotinia sclerotiorum. 3 Biotech, 2017, 7(2):90.
    [13] Hu XJ, Roberts DP, Xie LH, Maul JE, Yu CB, Li YS, Zhang SJ, Liao X. Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Crop Protection, 2013, 52:151-158.
    [14] Fatouros G, Gkizi D, Fragkogeorgi GA, Paplomatas EJ, Tjamos SE. Biological control of Pythium, Rhizoctonia and Sclerotinia in lettuce:association of the plant protective activity of the bacterium Paenibacillus alvei K165 with the induction of systemic resistance. Plant Pathology, 2018, 67(2):418-425.
    [15] Rahman ME, Hossain DM, Suzuki K, Shiiya A, Suzuki K, Dey TK, Nonaka M, Harada N. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology, 2016, 45(1):103-117.
    [16] Torres MJ, Brandan CP, Sabaté DC, Petroselli G, Erra-Balsells R, Audisio MC. Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biological Control, 2017, 105:93-99.
    [17] Gao XN, Han QM, Chen YF, Qin HQ, Huang LL, Kang ZS. Biological control of oilseed rape Sclerotinia stem rot by Bacillus subtilis strain Em7. Biocontrol Science and Technology, 2013, 24(1):39-52.
    [18] Min J, Huang LN, Lu JY, Xiang N, Xiao YN. Antagonistic study of Bacillus amyloliquefaciens Ba301 against Sclerotinia sclerotiorum. Guangxi Plant Protection, 2017, 30(3):21-22. (in Chinese) 闵杰, 黄丽娜, 卢金应, 向妮, 肖炎农. 解淀粉芽孢杆菌Ba301对核盘菌的拮抗研究. 广西植保, 2017, 30(3):21-22.
    [19] Gao XN, Chen JY, Huang LL, Qiao HP, Han QM, Kang ZS. Screening of antagonistic endophytic bacteria and their roles in control of Sclerotinia sclerotiorum in canola. Chinese Journal of Pesticide Science, 2010, 12(2):161-167. (in Chinese) 高小宁, 陈金艳, 黄丽丽, 乔宏萍, 韩青梅, 康振生. 油菜菌核病内生拮抗细菌的筛选及防病作用研究. 农药学学报, 2010, 12(2):161-167.
    [20] Yang DJ, Wang B, Wang JX, Chen Y, Zhou MG. Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control, 2009, 51(1):61-65.
    [21] Hou YP, Zhang SP, Wang JX, Chen CJ, Zhou MG. Biological control of rapeseed sclerotinia stem rot caused by Sclerotinia sclerotiorum with Bacillus subtilis NJ-18 and its colonization dynamics on the plant. Acta Phytopathologica Sinica, 2013, 43(4):411-417. (in Chinese) 侯毅平, 章四平, 王建新, 陈长军, 周明国. 枯草芽胞杆菌NJ-18对油菜菌核病的防治效果及其定殖动态. 植物病理学报, 2013, 43(4):411-417.
    [22] Zhang Y, Bai C, Ran GH, Zhang ZY, Chen YH, Wu G. Characterization of endophytic bacterial strain YS45 from the citrus xylem and its biocontrol activity against Sclerotinia stem rot of rapeseed. Acta Phytopathologica Sinica, 2009, 39(6):638-645. (in Chinese) 张翼, 白晨, 冉国华, 张志元, 陈耀辉, 吴刚. 柑橘内生细菌YS45的鉴定、抗菌物质分析及其对油菜菌核病的防治作用. 植物病理学报, 2009, 39(6):638-645.
    [23] Gao XN, Chen YF, Han QM, Qin HQ, Kang ZS, Huang LL. Identification and biocontrol efficacy of endophytic bacterium EDR2 against Sclerotinia sclerotiorum. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2):175-181, 188. (in Chinese) 高小宁, 陈亚菲, 韩青梅, 秦虎强, 康振生, 黄丽丽. 内生细菌EDR2的鉴定及其对油菜菌核病的防治. 西北农林科技大学学报(自然科学版), 2013, 41(2):175-181, 188.
    [24] Ge PH, Ma GZ, Fu HR, Bao ZH, Wang SF, Liu ZP. Identification and inhibitory effects of the marine bacterial strain GM-1 antagonistic to Sclerotinia sclerotiorum. Plant Protection, 2013, 39(2):50-56. (in Chinese) 葛平华, 马桂珍, 付泓润, 暴增海, 王淑芳, 刘兆普. 油菜菌核病菌拮抗海洋细菌GM-1菌株的种类鉴定及抑菌作用研究. 植物保护, 2013, 39(2):50-56.
    [25] Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 2007, 26(2):100-107.
    [26] Kumar A, Saini S, Wray V, Nimtz M, Prakash A, Johri BN. Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum. Journal of Basic Microbiology, 2012, 52(6):670-678.
    [27] Huang HC, Kokko EG, Yanke LJ, Phillippe RC. Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum. Canadian Journal of Microbiology, 1993, 39(2):227-233.
    [28] Zhang JX, Xue AG. Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathology, 2010, 59(2):382-391.
    [29] Zhang YM, Zhen X, Shi LJ, Zhou HY. Colonization of Bacillus subtilis S-16 and its control effect on Sclerotinia sclerotiorum. Journal of Hebei Agricultural Sciences, 2012, 16(1):36-38, 75. (in Chinese) 张一名, 甄熙, 石林君, 周洪友. 生防菌S-16的定殖动态以及对向日葵菌核病的生防效果研究. 河北农业科学, 2012, 16(1):36-38, 75.
    [30] Ma GZ, Gao HL, Zhang YH, Li SD, Xie BY. Studies on the cell wall degrading enzymes during the mycoparasitism of Gliocladium spp. isolates with the sclerotia of Sclerotinia sclerotiorum. Journal of Jilin Agricultural University, 2007, 29(6):628-632. (in Chinese) 马桂珍, 高会兰, 张拥华, 李世东, 谢丙炎. 粘帚霉对核盘菌菌核的寄生作用及其细胞壁降解酶活性分析. 吉林农业大学学报, 2007, 29(6):628-632.
    [31] Yang CD, Li ZD, Chen XR, Xu CL, Xue L. Identification, pathogen inhibiting and nitrogen fixation of endophytic bacterium Z19 of Polygonum viviparum. Microbiology China, 2014, 41(2):267-273. (in Chinese) 杨成德, 李振东, 陈秀蓉, 徐长林, 薛莉. 高寒草地珠芽蓼内生拮抗固氮菌Z19的鉴定及其固氮功能. 微生物学通报, 2014, 41(2):267-273.
    [32] Saxena A, Raghuwanshi R, Singh HB. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.. Journal of Basic Microbiology, 2015, 55(2):195-206.
    [33] Liang XJ, Guo DH, Liu YZ, Tang YQ, Qiao JQ, Du Y. Identification and evaluation of Delftia tsuruhatensis strain NF83-1. Journal of Plant Protection, 2016, 43(2):248-254. (in Chinese) 梁雪杰, 郭殿豪, 刘邮洲, 唐永清, 乔俊卿, 杜艳. 一株戴尔福特菌NF83-1的鉴定及评价. 植物保护学报, 2016, 43(2):248-254.
    [34] Wang YX, Jiang W, Liu YS, Meng LQ, Li J, Cao X, Hu JH, Chen JY, Zhang SM. Study on isolation and characterization of a psychrotrophic antagonistic bacterium from cold area. Journal of Northeast Agricultural University, 2016, 47(8):31-38. (in Chinese) 王玉霞, 姜威, 刘宇帅, 孟利强, 李晶, 曹旭, 胡基华, 陈静宇, 张淑梅. 寒地耐冷生防菌株筛选鉴定及特性研究. 东北农业大学学报, 2016, 47(8):31-38.
    [35] Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 2018, 285:44-55.
    [36] Yin ZW, Fan BQ, Ren P. Isolation and identification of a cellulose degrading fungus Y5 and its capability of degradating wheat straw. Chinese Journal of Environmental Science, 2011, 32(1):247-252. (in Chinese) 殷中伟, 范丙全, 任萍. 纤维素降解真菌Y5的筛选及其对小麦秸秆降解效果. 环境科学, 2011, 32(1):247-252.
    [37] Hu BC, Rimmer SR. Preliminary study of artificial inoculation for resistance (tolerance) to Sclerotinia sclerotiorum in rapeseed using detached leaves. Journal of Anhui Agricultural Sciences, 1989, (3):56-58. (in Chinese) 胡宝成, Rimmer SR. 油菜菌核病离体叶片接种法研究初报. 安徽农业科学, 1989, (3):56-58.
    [38] Wu HJ, Wang S, Zhan J, Ma LL, Gao XW. Biocontrol effect of lipopeptide compands produced by Bacillus spp. against rape Sclerotinia disease. Journal of Northeast Agricultural University, 2012, 43(7):84-88. (in Chinese) 伍辉军, 王帅, 湛江, 马玲莉, 高学文. 芽胞杆菌产生的脂肽类化合物在防治油菜菌核病中的作用. 东北农业大学学报, 2012, 43(7):84-88.
    [39] Rostami S, Maleki M, Shahriari D. The use of bacillus amyloliquefaciens to control of sclerotinia stem rot (Sclerotinia sclerotiorum) of cucumber. International Journal of Farming and Allied Sciences, 2013, 2(22):965-970.
    [40] Kim BY, Lee SY, Ahn JH, Song J, Kim WG, Weon HY. Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum CC178, a phyllosphere bacterium antagonistic to plant pathogenic fungi. Genome Announcements, 2015, 3(1):e01368-14.
    [41] Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Journal of Applied Microbiology, 2012, 112(1):159-174.
    [42] Lee SY, Weon HY, Kim WG, Kim JJ, Han JH. Selection of Bacillus amyloliquefaciens M27 for biocontrol on lettuce sclerotinia rot. The Korean Journal of Mycology, 2015, 43(3):180-184.
    [43] Selvaraj V, Sevugapper N. Synergistic action of anti-microbial peptide (AMP) genes in Bacillus amyloliquefaciens for the anagement of stem rot of carnation. Journal of Mycology and Plant Pathology, 2015, 45(4):330-335.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Caiyue Liu, Mingfang Cheng, Hongmei Jiang, Fukuan Zhao, Bingquan Fan. Isolation of a high effective antagonistic bacterial strain YC16 against Sclerotinia sclerotiorum diseases in sunflower. [J]. Acta Microbiologica Sinica, 2020, 60(2): 273-284

Copy
Share
Article Metrics
  • Abstract:1064
  • PDF: 1395
  • HTML: 2288
  • Cited by: 0
History
  • Received:March 31,2019
  • Revised:June 06,2019
  • Online: February 13,2020
Article QR Code