Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [48]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] This study aimed to reveal miRNA-mediated mechanism underlying Ascosphaera apis infection of Apis cerana cerana larvae. [Methods] Small RNA (sRNA) dataset of A. apis during infection (AaT) was screened out from sRNA-seq data from Ascosphaera apis-infected A. c. cerana 6-day-old larval guts. The filtered sRNA datasets from the purified spores (AaCK) and AaT were aligned against miRBase using Blast, followed by analyses of number and structural characteristics of pathogen miRNAs before and after Ascosphaera apis infection. Prediction, GO categorization and KEGG pathway enrichment analysis of targets of DEmiRNAs were conducted using related software. The regulation network between DEmiRNAs and corresponding targets was visualized using Cytoscape. Stem-loop RT-PCR, qPCR and molecular cloning were used to verify the reliability of our sequencing data. [Results] Totally, 380 and 387 miRNAs were identified in AaCK and AaT, respectively. The length of Ascosphaera apis miRNAs were mainly distributed between 18 nt and 25 nt; and the first base had a U bias. There were 155 up-regulated and 115 down-regulated miRNAs in AaCK vs AaT, targeting 6091 and 6145 mRNAs. Targets of DEmiRNAs were involved in 15 biological processes, 12 cell components and 11 molecular functions. Additionally, these targets were engaged in 123 pathways, regulating material metabolisms, energy metabolisms and signaling pathways. Moreover, complex regulation networks existed between DEmiRNA and corresponding targets, among them miR-29-x, miR-250-x, miR-4968-y, miR-11200-x, novel-m0023-5p, novel-m0130-5p and novel-m0135-5p can target mRNAs associated with cysteine proteinase, DNA methyltransferases and chitinase; miR-7-x, miR-9-z, miR-319-y and miR-5951-y can simultaneously regulate MAPK signaling pathway; miR-250-x may be involved in cross-kingdom regulation between A. apis and A. c. cerana larvae. [Conclusion] Our results revealed DEmiRNAs may participate in the infection process of A. apis via regulating targets associated with material and energy metabolisms, pathogen proliferation, virulence, and several signaling pathways; several key miRNAs including miR-7-x were potential targets for chalkbrood control.

    Reference
    [1] Li JH, Zheng ZY, Chen DF, Liang Q. Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process. Acta Entomologica Sinica, 2012, 55(7):790-797. (in Chinese)李江红, 郑志阳, 陈大福, 梁勤. 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察. 昆虫学报, 2012, 55(7):790-797.
    [2] Aronstein KA, Murray KD. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010, 103(S1):S20-S29.
    [3] Maxfield-Taylor SA, Mujic AB, Rao S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota:Eurotiomycetes:Ascosphaerales) in adult Bumble bees. PLoS One, 2015, 10(4):e0124868.
    [4] Chen DF, Guo R, Xiong CL, Zheng YZ, Hou CS, Fu ZM. Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis cerana cerana. Journal of Apicultural Research, 2018, 57(4):516-521.
    [5] Zhang ZN, Xiong CL, Xu XJ, Huang ZJ, Zheng YZ, Luo Q, Liu M, Li WD, Tong XY, Zhang Q, Liang Q, Guo R, Chen DF. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017, 60(1):34-44. (in Chinese)张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017, 60(1):34-44.
    [6] Guo R, Chen DF, Huang ZJ, Liang Q, Xiong CL, Xu XJ, Zheng YZ, Zhang ZN, Xie YL, Tong XY, Hou ZX, Jiang LL, Dao C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017, 57(12):1865-1878. (in Chinese)郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017, 57(12):1865-1878.
    [7] Chen DF, Guo R, Xiong CL, Liang Q, Zheng YZ, Xu XJ, Huang ZJ, Zhang ZN, Zhang L, Li WD, Tong XY, Xi WJ. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica (Hyemenoptera:Apidae). Acta Entomologica Sinica, 2017, 60(4):401-411. (in Chinese)陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017, 60(4):401-411.
    [8] Guo R, Wang HP, Chen HZ, Xiong CL, Zheng YZ, Fu ZM, Zhao HX, Chen DF. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018, 58(6):1077-1089. (in Chinese)郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018, 58(6):1077-1089.
    [9] Hussain M, Asgari S. MicroRNAs as mediators of insect host-pathogen interactions and immunity. Journal of Insect Physiology, 2014, 70:151-158.
    [10] Lee HC, Li LD, Gu WF, Xue ZH, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Molecular Cell, 2010, 38(6):803-814.
    [11] Nunes CC, Sailsbery JK, Dean RA. Characterization and application of small RNAs and RNA silencing mechanisms in fungi. Fungal Biology Reviews, 2011, 25(4):172-180.
    [12] Chen R, Jiang N, Jiang QY, Sun XJ, Wang Y, Zhang H, Hu Z. Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS One, 2014, 9(8):e104956.
    [13] Zhou JH, Fu YP, Xie JT, Li B, Jiang DH, Li GQ, Cheng JS. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Molecular Genetics and Genomics, 2012, 287(4):275-282.
    [14] Zhou Q, Wang ZX, Zhang J, Meng HM, Huang B. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biology, 2012, 116(11):1156-1162.
    [15] Huang Q, Evans JD. Identification of microRNA-like small RNAs from fungal parasite Nosema ceranae. Journal of Invertebrate Pathology, 2016, 133:107-109.
    [16] Li Q, Cui CL, Song HS, Wang SB. The effects of mro-miR-33 on the conidial production in Metarhizium robertsii. Mycosystema, 2017, 36(6):671-678. (in Chinese)李琼, 崔春来, 宋红生, 王四宝. mro-miR-33在绿僵菌产孢中的作用. 菌物学报, 2017, 36(6):671-678.
    [17] Croston TL, Lemons AR, Beezhold DH, Beezhold DH, Green BJ. MicroRNA regulation of host immune responses following fungal exposure. Frontiers in Immunology, 2018, 9:170.
    [18] Shakeel M, Xu XX, Xu J, Li SZ, Yu JL, Zhou XQ, Xu XJ, Hu QB, Yu XQ, Jin FL. Genome-wide identification of destruxin A-responsive immunity-related microRNAs in diamondback moth, Plutella xylostella. Frontiers in Immunology, 2018, 9:185.
    [19] Evans JD, Huang Q. Interactions among host-parasite microRNAs during Nosema ceranae proliferation in Apis mellifera. Frontiers in Microbiology, 2018, 9:698.
    [20] Du Y, Tong XY, Zhou DD, Chen DF, Xiong CL, Zheng YZ, Xu GJ, Wang HP, Chen HZ, Guo YL, Long Q, Guo R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019, 59(9):1747-1764. (in Chinese)杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019, 59(9):1747-1764.
    [21] Guo R, Du Y, Zhou NH, Liu SY, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Wang HP, Geng SH, Zhou DD, Chen DF. Comprehensive analysis of differentially expressed microRNAs and their target genes in the larval gut of Apis mellifera ligustica during the late stage of Ascosphaera apis stress. Acta Entomologica Sinica, 2019, 62(1):49-60. (in Chinese)郭睿, 杜宇, 周倪红, 刘思亚, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 耿四海, 周丁丁, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌胁迫后期的差异表达微小RNA及其靶基因分析. 昆虫学报, 2019, 62(1):49-60.
    [22] Xiong CL, Du Y, Chen DF, Zheng YZ, Fu ZM, Wang HP, Geng SH, Chen HZ, Zhou DD, Wu SZ, Shi CY, Guo R. Bioinformatic prediction and analysis of miRNAs in the Apis mellifera ligustica larval gut. Chinese Journal of Applied Entomology, 2018, 55(6):1023-1033. (in Chinese)熊翠玲, 杜宇, 陈大福, 郑燕珍, 付中民, 王海朋, 耿四海, 陈华枝, 周丁丁, 吴素珍, 石彩云, 郭睿. 意大利蜜蜂幼虫肠道的miRNAs的生物信息学预测及分析. 应用昆虫学报, 2018, 55(6):1023-1033.
    [23] Rajewsky N, Socci ND. Computational identification of microRNA targets. Developmental Biology, 2004, 267(2):529-535.
    [24] Zhu KG, Liu MH, Fu Z, Zhou Z, Kong Y, Liang HW, Lin ZG, Luo J, Zheng HQ, Wan P, Zhang JF, Zen K, Chen J, Hu FL, Zhang CY, Ren J, Chen X. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genetics, 2017, 13(8):e1006946.
    [25] Guo R, Chen DF, Diao QY, Xiong CL, Zheng YZ, Hou CS. Transcriptomic investigation of immune responses of the Apis cerana cerana larval gut infected by Ascosphaera apis. Journal of Invertebrate Pathology, 2019, 166:107210.
    [26] Chen DF, Guo R, Xu XJ, Xiong CL, Liang Q, Zheng YZ, Luo Q, Zhang ZN, Huang ZJ, Kumar D, Xi WJ, Zou X, Liu M. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017, 621:40-50.
    [27] Pentimone I, Lebrón R, Hackenberg M, Rosso LC, Colagiero M, Nigro F, Ciancio A. Identification of tomato miRNAs responsive to root colonization by endophytic Pochonia chlamydosporia. Applied Microbiology and Biotechnology, 2018, 102(2):907-919.
    [28] Suzuki MM, Bird A. DNA methylation landscapes:provocative insights from epigenomics. Nature Reviews Genetics, 2008, 9(6):465-476.
    [29] Kouzminova E, Selker EU. Dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. The EMBO Journal, 2001, 20(15):4309-4323.
    [30] Jeon J, Choi J, Lee GW, Park SY, Huh A, Dean RA, Lee YH. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Scientific Reports, 2015, 5(1):8567.
    [31] Wang YL, Wang TT, Qiao LT, Zhu JY, Fan JR, Zhang TT, Wang ZX, Li WZ, Chen AH, Huang B. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. Applied Microbiology and Biotechnology, 2017, 101(10):4215-4226.
    [32] Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, Nery JR, Baulcombe DC, Ecker JR. Mobile small RNAs regulate genome-wide DNA methylation. Proceedings of the National Academy of Science of the United States of America, 2016, 113(6):E801-E810.
    [33] Xu ZB, Song LX. Research progress in miRNAs and methylation regulation. Chemistry of Life, 2016, 36(5):677-682. (in Chinese)徐振彪, 宋林霞. miRNA与甲基化调控研究进展. 生命的化学, 2016, 36(5):677-682.
    [34] Fabbri M, Garzon R, Cimmino A, Liu ZF, Zanesi N, Callegari E, Liu SJ, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Science of the United States of America, 2007, 104(40):15805-15810.
    [35] Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15(5):645-656.
    [36] Huang SK, Ye KT, Huang WF, Ying BH, Su X, Lin LH, Li JH, Chen YP, Li JL, Bao XL, Hu JZ. Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems, 2018, 3(6):e00177-18.
    [37] Vilcinskas A. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence, 2010, 1(3):206-214.
    [38] Du Y, Xiong CL, Shi XL, Zheng YZ, Fu ZM, Xu XJ, Chen DF, Guo R. Transcriptome analysis of differentially expressed genes in Ascosphaera apis stressing the 6-day-old larval gut of Apis mellifera ligustica. Acta Agriculturae Zhejiangensis, 2017, 29(7):1119-1128. (in Chinese)杜宇, 熊翠玲, 史秀丽, 郑燕珍, 付中民, 徐细建, 陈大福, 郭睿. 意大利蜜蜂6日龄幼虫肠道内球囊菌的差异表达基因分析. 浙江农业学报, 2017, 29(7):1119-1128.
    [39] Xu XG, Zhang ZP, Cheng B. Progression on the research of two-component signal transduction system in fungus and its inhibitors. Chinese Journal of Mycology, 2011, 6(6):370-372, 380. (in Chinese)徐西光, 张子平, 程波. 真菌双组分信号转导系统及其抑制剂研究进展. 中国真菌学杂志, 2011, 6(6):370-372, 380.
    [40] Jiang C, Zhang X, Liu HQ, Xu JR. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathogens, 2018, 14(3):e1006875.
    [41] Turrà D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic fungi:conserved regulators of infection. Annual Review of Phytopathology, 2014, 52:267-288.
    [42] Chen DF, Wang HQ, Li WD, Xiong CL, Zheng YZ, Fu ZM, Xu XJ, Huang ZJ, Guo R. Analysis of highly expressed genes of Ascosphaera apis infecting the gut of Apis cerana cerana larvae and its in vitro culture. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(5):562-568. (in Chinese)陈大福, 王鸿权, 李汶东, 熊翠玲, 郑燕珍, 付中民, 徐细建, 黄枳腱, 郭睿. 胁迫中华蜜蜂幼虫肠道的球囊菌及其体外培养的高表达基因分析. 福建农林大学学报(自然科学版), 2017, 46(5):562-568.
    [43] Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543):858-862.
    [44] McClure LV, Sullivan CS. Kaposi's sarcoma herpes virus taps into a host microRNA regulatory network. Cell Host & Microbe, 2008, 3(1):1-3.
    [45] LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, Thornburg CD, Telen MJ, Ohler U, Nicchitta CV, Haystead T, Chi JT. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host & Microbe, 2012, 12(2):187-199.
    [46] Guo R, Chen DF, Xiong CL, Hou CS, Zheng YZ, Fu ZM, Diao QY, Zhang L, Wang HQ, Hou ZX, Li WD, Kumar D, Liang Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018, 156:1-5.
    [47] Guo R, Chen DF, Chen HZ, Fu ZM, Xiong CL, Hou CS, Zheng YZ, Guo YL, Wang HP, Du Y, Diao QY. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018, 678:17-22.
    [48] Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 2011, 147(2):382-395.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Cuiling Xiong, Yu Du, Ruirong Feng, Haibin Jiang, Xiaoyu Shi, Haipeng Wang, Xiaoxue Fan, Jie Wang, Zhiwei Zhu, Yuanchan Fan, Huazhi Chen, Dingding Zhou, Yanzhen Zheng, Dafu Chen, Rui Guo. Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae. [J]. Acta Microbiologica Sinica, 2020, 60(5): 992-1009

Copy
Related Videos

Share
Article Metrics
  • Abstract:657
  • PDF: 1243
  • HTML: 1271
  • Cited by: 0
History
  • Received:September 10,2019
  • Revised:November 06,2019
  • Online: May 11,2020
Article QR Code