Identification and functional study of NRPS1 in Trichoderma hypoxylon
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] Trichoderma is a genus of common filamentous fungi used for biological control, by producing a variety of secondary metabolites that play an important role in biological control. In this study, a putative nonribosomal peptide synthetase (NRPS) NRPS1 was identified in Trichoderma hypoxylon by genome mining approach and the function of this gene's function was studied by using NRPS1 mutant against the pathogens. [Methods] Bioinformatics analysis reveals a putative NRPS containing biosynthetic gene cluster that is potential for the biosynthesis of peptaibol. The deletion cassette containing the hygromycin resistance gene was constructed by Quick-change method. The partial gene was deleted by using PEG mediated transformation in T. hypoxylon. NRPS1's function was identified by the biological activity assay against pathogenic fungi. [Results] We identified a putative peptaibol synthesis gene NRPS1 and obtained three deletion mutants. Deletion of NRPS1 significantly decreased the ability to resistance the pathogenic fungi, such as Aspergillus parasiticus, Fusarium oxysporum, and Verticillium alboatrum. [Conclusion] NRPS1 is a potential peptaibol synthesis gene in T. hypoxylon and plays important roles in the resistance to pathogenic fungi. This work lays the foundation for the elucidation of peptaibol biosynthesis and its application for the biological control in agriculture.

    Reference
    [1] Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2004, 2(1):43-56.
    [2] Harman GE. Overview of mechanisms and uses of Trichoderma spp.. Phytopathology, 2006, 96(2):190-194.
    [3] Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases:the history and evolution of current concepts. Plant Disease, 2003, 87(1):4-10.
    [4] Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 2018, 117:147-157.
    [5] Papavizas GC. Trichoderma and Gliocladium:biology, ecology, and potential for biocontrol. Annual Review of Phytopathology, 1985, 23:23-54.
    [6] Sun JZ, Pei YF, Li EW, Li W, Hyde KD, Yin WB, Liu XZ. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Scientific Reports, 2016, 6:37369.
    [7] Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 2007, 7(1):89-123.
    [8] Contreras-Cornejo HA, Macías-Rodríguez L, Del-Val E, Larsen J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere:interactions with plants. FEMS Microbiology Ecology, 2016, 92(4):fiw036.
    [9] Inbar J, Abramsky M, Cohen D, Chet I. Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. European Journal of Plant Pathology, 1994, 100(5):337-346.
    [10] Zhu ZX, Zhuang WY. Current understanding of the genus Trichoderma (Hypocreales, Ascomycota). Mycosystema, 2014, 33(6):1136-1153. (in Chinese) 朱兆香, 庄文颖. 木霉属研究概况. 菌物学报, 2014, 33(6):1136-1153.
    [11] Song XY, Zhang YZ, Wang YX. Antimicrobial peptides peptaibols from Trichoderma-a review. Acta Microbiologica Sinica, 2011, 51(4):438-444. (in Chinese) 宋晓妍, 张玉忠, 王元秀. 木霉peptaibols抗菌肽的研究进展. 微生物学报, 2011, 51(4):438-444.
    [12] Lynch JM, Lumsden RD, Atkey PT, Ousley MA. Prospects for control of pythium damping-off of lettuce with Trichoderma, Gliocladium and Enterobacter spp.. Biology and Fertility of Soils, 1991, 12(2):95-99.
    [13] Meyer CE, Reusser F. A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia, 1967, 23(2):85-86.
    [14] Leitgeb B, Szekeres A, Manczinger L, Vágvölgyi C, Kredics L. The history of alamethicin:a review of the most extensively studied peptaibol. Chemistry & Biodiversity, 2007, 4(6):1027-1051.
    [15] Chugh JK, Wallace BA. Peptaibols:models for ion channels. Biochemical Society Transactions, 2001, 29(4):565-570.
    [16] Degenkolb T, Kirschbaum J, Brückner H. New sequences, constituents, and producers of peptaibiotics:an updated review. Chemistry & Biodiversity, 2007, 4(6):1052-1067.
    [17] Whitmore L, Wallace BA. The peptaibol database:a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Research, 2004, 32(S1):593-594.
    [18] Whitmore L, Chugh JK, Snook CF, Wallace BA. The peptaibol database:a sequence and structure resource. Journal of Peptide Science, 2003, 9(11/12):663-665.
    [19] Marik T, Tyagi C, Racic G, Rakk D, Szekeres A, Vagvolgyi C, Kredics L. New 19-residue peptaibols from Trichoderma clade viride. Microorganisms, 2018, 6(3):85.
    [20] Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C. Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. Journal of Biological Chemistry, 2002, 277(23):20862-20868.
    [21] Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Quarterly Reviews of Biophysics, 1977, 10(1):1-34.
    [22] Liu H, Wang G, Li W, Liu XZ, Li EW, Yin WB. A highly efficient genetic system for the identification of a harzianum B biosynthetic gene cluster in Trichoderma hypoxylon. Microbiology, 2018, 164(5):769-778.
    [23] Alexander NJ, Hohn TM, McCormick SP. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Applied and Environmental Microbiology, 1998, 64:221-225.
    [24] Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. AntiSMASH 5.0:updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 2019, 41(W1):81-87.
    [25] Bok JW, Keller NP. Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis//Keller N, Turner G. Fungal Secondary Metabolism. Totowa:Humana Press, 2012:163-174.
    [26] Fang ZD. Method of plant pathology research. 3rd ed. Beijing:Agricultural Press, 1998. (in Chinese) 方中达. 植病研究方法. 第3版. 北京:中国农业出版社, 1998:141.
    [27] Marik T, Szekeres A, Várszegi C, Czifra D, Vágvölgyi C, Kredics L. Rapid bioactivity-based pre-screening method for the detection of peptaibiotic-producing Trichoderma strains. Acta Biologica Szegediensis, 2013, 57(1):1-7.
    [28] Limón MC, Chacón MR, Mejías R, Delgado-Jarana J, Rincón AM, Codón AC, Benítez T. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Applied Microbiology and Biotechnology, 2004, 64(5):675-685.
    [29] Tronsmo A, Dennis C. Effect of temperature on antagonistic properties of Trichoderma species. Transactions of the British Mycological Society, 1978, 71(3):469-474.
    [30] Yelton MM, Hamer JE, Timberlake WE. Transformation of Aspergillus nidulans by using a trpC plasmid. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(5):1470-1474.
    [31] Wang XN, Zhang XL, Liu L, Xiang MC, Wang WZ, Sun X, Che YS, Guo LD, Liu G, Guo LY, Wang CS, Yin WB, Stadler M, Zhang XY, Liu XZ, Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics, 2015, 16:28.
    [32] Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, De Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 2008, 26(5):553-560.
    [33] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1):44-57.
    [34] Li W, Wu GW, Yang YP, Yin WB. Discovery of fungal natural product in the post-genomic era. Mycosystema, 2015, 34(5):914-926. (in Chinese) 李伟, 吴广畏, 杨玉萍, 尹文兵. 后基因组时代的真菌天然产物发现. 菌物学报, 2015, 34(5):914-926.
    [35] Zheng YJ, Ma K, Lyu HN, Huang Y, Liu HW, Liu L, Che YS, Liu XZ, Zou HX, Yin WB. Genetic manipulation of the COP9 signalosome subunit PfCsnE leads to the discovery of pestaloficins in Pestalotiopsis fici. Organic Letters, 2017, 19(17):4700-4703.
    [36] Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25):10376-10381.
    [37] Cragg GM, Newman DJ. Natural products:a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(6):3670-3695.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Yuhan Pu, Huan Liu, Guocan Chen, Lixia Guo, Wenbing Yin. Identification and functional study of NRPS1 in Trichoderma hypoxylon. [J]. Acta Microbiologica Sinica, 2020, 60(10): 2350-2361

Copy
Share
Article Metrics
  • Abstract:451
  • PDF: 1281
  • HTML: 1505
  • Cited by: 0
History
  • Received:December 30,2019
  • Revised:March 02,2020
  • Online: September 30,2020
Article QR Code