Advance in the co-culture of anaerobic fungi and methanogens
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Anaerobic fungi are among the most effective lignocelluloses-degrading microbes in nature. Recently, increasing number of the co-cultures of anaerobic fungi with methanogens have been isolated. In the co-culture, methanogens utilize metabolites produced by anaerobic fungi, enhancing the lignocelluloses-degrading ability of anaerobic fungi; anaerobic fungi provide methanogens with energy and nutrients, with which methanogens rapidly generate substantial methane. A comprehensive and in-depth understanding of the mutual interaction and the lignocelluloses-degrading methane-producing characteristics of the co-culture will be conducive to investigating the regulation of the lignocellulosic degradation and methane production. Thus, in this review, we summarized the isolation and identification, the diversity and the mutual interaction of the co-culture, and the decomposition of lignocellulosic material by the co-culture.

    Reference
    [1] Weimer PJ, Russell JB, Muck RE. Lessons from the cow:what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresource Technology, 2009, 100(21):5323-5331.
    [2] Li FY, Guan LL. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Applied and Environmental Microbiology, 2017, 83(9):e00061-17.
    [3] Edwards JE, Kingston-Smith AH, Jimenez HR, Huws SA, Skøt KP, Griffith GW, McEwan NR, Theodorou MK. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiology Ecology, 2008, 66(3):537-545.
    [4] Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O'Malley MA. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science, 2016, 351(6278):1192-1195.
    [5] Akin DE, Borneman WS, Lyon CE. Degradation of leaf blades and stems by monocentric and polycentric isolates of ruminal fungi. Animal Feed Science and Technology, 1990, 31(3/4):205-221.
    [6] Lee SS, Ha JK, Cheng KJ. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Applied and Environmental Microbiology, 2000, 66(9):3807-3813.
    [7] Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Board-invited review:Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 2008, 86(2):397-412.
    [8] Rezaeian M, Beakes GW, Parker DS. Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycological Research, 2004, 108(10):1227-1233.
    [9] Ungerfeld EM. Inhibition of rumen methanogenesis and ruminant productivity:a meta-analysis. Frontiers in Veterinary Science, 2018, 5:113.
    [10] Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Applied and Environmental Microbiology, 1981, 42(6):1103-1110.
    [11] Joblin KN, Matsui H, Naylor GE, Ushida K. Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Current Microbiology, 2002, 45(1):46-53.
    [12] Cheng YF, Edwards JE, Allison GG, Zhu WY, Theodorou MK. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresource Technology, 2009, 100(20):4821-4828.
    [13] Jin W, Cheng YF, Mao SY, Zhu WY. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresource Technology, 2011, 102(17):7925-7931.
    [14] Sun MZ, Jin W, Li YF, Mao SY, Cheng YF, Zhu WY. Isolation and identification of cellulolytic anaerobic fungi and their associated methanogens from Holstein Cow. Acta Microbiologica Sinica, 2014, 54(5):563-571. (in Chinese)孙美洲, 金巍, 李袁飞, 毛胜勇, 成艳芬, 朱伟云. 瘤胃降解粗纤维产甲烷的厌氧真菌与甲烷菌共培养物的分离鉴定. 微生物学报, 2014, 54(5):563-571.
    [15] Wei YQ, Yang HJ, Luan Y, Long RJ, Wu YJ, Wang ZY. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau. Journal of Applied Microbiology, 2016, 120(3):571-587.
    [16] Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA. Anaerobic gut fungi:advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnology and Bioengineering, 2014, 111(8):1471-1482.
    [17] Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng YF, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O'Malley MA, Griffith GW, Smidt H. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi:insights, challenges and opportunities. Frontiers in Microbiology, 2017, 8:1657.
    [18] Leis S, Dresch P, Peintner U, Fliegerová K, Sandbichler AM, Insam H, Podmirseg SM. Finding a robust strain for biomethanation:anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe, 2014, 29:34-43.
    [19] Friedrich MW. Methyl-coenzyme M reductase genes:unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods in Enzymology, 2005, 397:428-442.
    [20] Ozutsumi Y, Tajima K, Takenaka A, Itabashi H. The mcrA gene and 16S rRNA gene in the phylogenetic analysis of methanogens in the rumen of faunated and unfaunated cattle. Animal Science Journal, 2012, 83(11):727-734.
    [21] Li YF, Cheng YF, Zhu WY. Effects of transfer frequency on community of methanogens co-cultured with anaerobic fungi by T-RFLP. Microbiology China, 2015, 42(3):609-619. (in Chinese)李袁飞, 成艳芬, 朱伟云. T-RFLP分析厌氧真菌传代频率对共存产甲烷菌菌群的影响. 微生物学通报, 2015, 42(3):609-619.
    [22] Cheng YF, Mao SY, Pei CX, Liu JX, Zhu WY. Detection and diversity analysis of rumen methanogens in the co-cultures with anaerobic fungi. Acta Microbiologica Sinica, 2006, 46(6):879-883. (in Chinese)成艳芬, 毛胜勇, 裴彩霞, 刘建新, 朱伟云. 共存于厌氧真菌分离培养液中瘤胃甲烷菌的检测及其多样性分析. 微生物学报, 2006, 46(6):879-883.
    [23] Cheng YF, Zhu WY. Diversity analysis of anaerobic fungi in the co-cultures with or without methanogens by amplified ribosomal intergenic spacer analysis. Acta Microbiologica Sinica, 2009, 49(4):504-511. (in Chinese)成艳芬, 朱伟云. ARISA方法研究产甲烷菌共存及去除条件下瘤胃真菌多样性变化. 微生物学报, 2009, 49(4):504-511.
    [24] Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. Anaerobic fungi (phylum Neocallimastigomycota):advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 2014, 90(1):1-17.
    [25] St-Pierre B, Wright ADG. Diversity of gut methanogens in herbivorous animals. Animal, 2013, 7(S1):49-56.
    [26] Mi L, Yang B, Hu XL, Luo Y, Liu JX, Yu ZT, Wang JK. Comparative analysis of the microbiota between sheep rumen and rabbit cecum provides new insight into their differential methane production. Frontiers in Microbiology, 2018, 9:575.
    [27] Mountfort DO, Asher RA, Bauchop T. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a tricultureity of anaerobic ruminal fungi. Applied and Environmental Microbiology, 1990, 56(8):2287-2295.
    [44] Wei YQ, Long RJ, Yang H, Yang HJ, Shen XH, Shi RF, Wang ZY, Du JG, Qi XJ, Ye QH. Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau. Anaerobe, 2016, 39:158-164.
    [45] Teunissen MJ, Kets EPW, Op den Camp HJM, Huis in't Veld JHJ, Vogels GD. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Archives of Microbiology, 1992, 157(2):176-182.
    [46] Swift CL, Brown JL, Seppälä S, O'Malley MA. Co-cultivation of the anaerobic fungus Anaeromyces robustus with Methanobacterium bryantii enhances transcription of carbohydrate active enzymes. Journal of Industrial Microbiology and Biotechnology, 2019, 46(9/10):1427-1433.
    [47] Joblin KN, Williams AG. Effect of cocultivation of ruminal chytrid fungi with Methanobrevibacter sm杩衴顨ii嬼缯浩> 扯艮舠lu杣佥乲ne騠敳浴癥艭谠汤硥穧癲聡畤灡荴兩孯孮匠污睮荤丠豥乸畴杲条酣牥恬癬彵呬ar删牦葵兮孧扡l enzyme activities. Letter in Applied Microbiology, 1991, 12(4):121-124.
    [48] Henske JK, Gilmore SP, Haitjema CH, Solomon KV, O'Malley MA. Biomass-degrading enzymes are catabolite repressed in anaerobic gut fungi. AIChE Journal, 2018, 64(12):4263-4270.
    [49] Procházka J, Mrázek J, Štrosová L, Fliegerová K, Zábranská J, Dohányos M. Enhanced biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 2012, 12(3):343-351.
    [50] Lillington SP, Leggieri PA, Heom KA, O'Malley MA. Nature's recyclers:anaerobic microbial communities drive crude biomass deconstruction. Current Opinion in Biotechnology, 2020, 62:38-47.
    [51] Wilken E, Seppälä S, Lankiewicz TS, Saxena M, Henske JK, Salamov AA, Grigoriev IV, O'Malley MA. Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metabolic Engineering Communications, 2020, 10:e00107.g YF, Zhu WY. Co-cultured methanogen improved the metabolism in the hydrogenosome of anaerobic fungus as revealed by gas chromatography-mass spectrometry analysis. Asian-Australasian Journal of Animal Sciences, 2020, 33(12):1948-1956.
    [37] Marvin-Sikkema FD, Gomes TMP, Grivet JP, Gottschal JC, Prins RA. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Archives of Microbiology, 1993, 160(5):388-396.
    [38] Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Molecular Microbiology, 2004, 51(5):1389-1399.
    [39] Li YF, Cheng YF, Zhu WY. Enhancing the resistance of anaerobic fungus Piromyces sp. F1 to nitrovin by co-culture with Methanobrevibacter thaueri F1. Microbiology China, 2018, 45(1):111-119. (in Chinese)李袁飞, 成艳芬, 朱伟云. 共存甲烷短杆菌Methanobrevibacter thaueri F1提高梨囊鞭菌Piromyces sp. F1对硝呋烯腙的耐受性. 微生物学通报, 2018, 45(1):111-119.
    [40] Bernalier A, Fonty G, Gouet P. Cellulose degradation by two rumen anaerobic fungi in monoculture or in coculture with rumen bacteria. Animal Feed Science and Technology, 1991, 32(1/3):131-136.
    [41] Akin DE, Lyon CE, Windham WR, Rigsby LL. Physical degradation of lignified stem tissues by ruminal fungi. Applied and Environmental Microbiology, 1989, 55(3):611-616.
    [42] Joblin KN, Campbell GP, Richardson AJ, Stewart CS. Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens. Letters in Applied Microbiology, 1989, 9(5):195-197.
    [43] Joblin KN, Naylor GE, Williams AG. Effect of Methanobrevibacter smithii on xylanolytic activ
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Yuanfei Li, Jishang Gong, Yousheng Rao, Yanfen Cheng, Weiyun Zhu. Advance in the co-culture of anaerobic fungi and methanogens. [J]. Acta Microbiologica Sinica, 2021, 61(1): 1-12

Copy
Share
Article Metrics
  • Abstract:797
  • PDF: 1519
  • HTML: 2505
  • Cited by: 0
History
  • Received:June 27,2019
  • Revised:August 09,2020
  • Online: January 12,2021
Article QR Code