CRISPR/Cas system and implications for novel measures against tuberculosis
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [84]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Tuberculosis caused by Mycobacterium tuberculosis (Mtb) remains a serious global infectious disease. The world health organization estimates that 1.5 million people died from the disease in 2019. The biology of Mtb can inform new measures against tuberculosis. To summarize the progress of CRISPR/Cas-associated genes (CRISPR/Cas) system in Mtb for better tuberculosis control tools development and biology study of Mtb. Current publications and progress in our lab were retrieved and compared. Clustered regularly interspaced short palindromic repeats, CRISPR/Cas system, well known bacterial adaptive immunity system widespread in Mycobacteria including M. tuberculosis, was developed as gene editing tool. We summarized the biology of the endogenous type III-A CRISPR-Cas systems in Mycobacteria, as well as CRISPR/Cas gene editing tool application in Mtb basic and applied studies, with focus on its potential for novel measures against tuberculosis. CRISPR/Cas is burgeoning focus in M. tuberculosis study and promising tool for better tuberculosis control.

    Reference
    [1] The Lancet. End the tuberculosis emergency:a promise is not enough. The Lancet, 2019, 394(10208):1482.
    [2] Wright A, Zignol M, Van Deun A, Falzon D, Gerdes SR, Feldman K, Hoffner S, Drobniewski F, Barrera L, Van Soolingen D, Boulabhal F, Paramasivan CN, Kam KM, Mitarai S, Nunn P, Raviglione M. Epidemiology of antituberculosis drug resistance 2002-07:an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. The Lancet, 2009, 373(9678):1861-1873.
    [3] Sharma K, Verma R, Advani J, Chatterjee O, Solanki HS, Sharma A, Varma S, Modi M, Ray P, Mukherjee KK, Sharma M, Dhillion MS, Suar M, Chatterjee A, Pandey A, Prasad TSK, Gowda H. Whole genome sequencing of Mycobacterium tuberculosis Isolates from extrapulmonary sites. OMICS:A Journal of Integrative Biology, 2017, 21(7):413-425.
    [4] Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems//Lundgren M, Charpentier E, Fineran PC. CRISPR. New York:Humana Press, 2015:47-75.
    [5] Koonin EV, Makarova KS. Mobile genetic elements and evolution of CRISPR-cas systems:all the way there and back. Genome Biology and Evolution, 2017, 9(10):2812-2825.
    [6] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819):1709-1712.
    [7] Bikard D, Barrangou R. Using CRISPR-Cas systems as antimicrobials. Current Opinion in Microbiology, 2017, 37:155-160.
    [8] Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 2014, 32(11):1141-1145.
    [9] Bondy-Denomy J, Davidson AR. To acquire or resist:the complex biological effects of CRISPR-Cas systems. Trends in Microbiology, 2014, 22(4):218-225.
    [10] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12):5429-5433.
    [11] Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6):1565-1575.
    [12] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823.
    [13] Kim E, Kim S, Kim DH, Choi BS, Choi IY, Kim JS. Precision genome engineering with programmable DNA-nicking enzymes. Genome Research, 2012, 22(7):1327-1333.
    [14] Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11):2281-2308.
    [15] Yan MY, Li SS, Ding XY, Guo XP, Jin Q, Sun YC. A CRISPR-Assisted nonhomologous end-joining strategy for efficient genome editing in Mycobacterium tuberculosis. mBio, 2020, 11(1):e02364-19.
    [16] Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13(11):722-736.
    [17] Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18(2):67-83.
    [18] Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 2017, 37:67-78.
    [19] Xiao YB, Luo M, Dolan AE, Liao MF, Ke AL. Structure basis for RNA-guided DNA degradation by Cascade and Cas3. Science, 2018, 361(6397):eaat0839.
    [20] Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6):467-477.
    [21] Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183.
    [22] Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3):759-771.
    [23] Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299):aaf5573.
    [24] Liu W, Tang DD, Wang HJ, Lian JZ, Huang L, Xu ZN. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a. Applied Microbiology and Biotechnology, 2019, 103(21/22):8911-8922.
    [25] Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC. CRISPR-Cas12a-Assisted recombineering in bacteria. Applied and Environmental Microbiology, 2017, 83(17):e00947-17.
    [26] Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology, 2016, 34(8):869-874.
    [27] Wei WJ, Zhang S, Fleming J, Chen Y, Li ZH, Fan SS, Liu Y, Wang W, Wang T, Liu Y, Ren BG, Wang M, Jiao JJ, Chen YY, Zhou Y, Zhou YF, Gu SJ, Zhang XL, Wan L, Chen T, Zhou L, Chen Y, Zhang XE, Li CY, Zhang HT, Bi LJ. Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features. FASEB Journal, 2019, 33(1):1496-1509.
    [28] Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. Journal of Bacteriology, 2014, 196(2):310-317.
    [29] Choudhary E, Lunge A, Agarwal N. Strategies of genome editing in mycobacteria:achievements and challenges. Tuberculosis, 2016, 98:132-138.
    [30] Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry III CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685):537-544.
    [31] Groenen PMA, Bunschoten AE, van Soolingen D, van Embden JDA. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Molecular Microbiology, 1993, 10(5):1057-1065.
    [32] Brudey K, Gutierrez MC, Vincent V, Parsons LM, Salfinger M, Rastogi N, Sola C. Mycobacterium africanum genotyping using novel spacer oligonucleotides in the direct repeat locus. Journal of Clinical Microbiology, 2004, 42(11):5053-5057.
    [33] He LM, Fan XY, Xie JP. Comparative genomic structures of Mycobacterium CRISPR-Cas. Journal of Cellular Biochemistry, 2012, 113(7):2464-2473.
    [34] Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of genetically monomorphic bacteria:DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One, 2009, 4(11):e7815.
    [35] Mokrousov I, Rastogi N. Spacer-based macroarrays for CRISPR genotyping. Methods in Molecular Biology, 2015, 1311:111-131.
    [36] Botelho A, Canto A, Leão C, Cunha MV. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex. Methods in Molecular Biology, 2015, 1247:373-389.
    [37] Mokrousov I, Vyazovaya A, Narvskaya O. Mycobacterium tuberculosis latin american-mediterranean family and its sublineages in the light of robust evolutionary markers. Journal of Bacteriology, 2014, 196(10):1833-1841.
    [38] Borile C, Labarre M, Franz S, Sola C, Refrégier G. Using affinity propagation for identifying subspecies among clonal organisms:lessons from M. tuberculosis. BMC Bioinformatics, 2011, 12:224.
    [39] Grissa I, Bouchon P, Pourcel C, Vergnaud G. On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie, 2008, 90(4):660-668.
    [40] Liu F, Hu YF, Wang Q, Li HM, Gao GF, Liu CH, Zhu BL. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates. BMC Genomics, 2014, 15:469.
    [41] Abadia E, Zhang J, Ritacco V, Kremer K, Ruimy R, Rigouts L, Gomes HM, Elias AR, Fauville-Dufaux M, Stoffels K, Rasolofo-Razanamparany V, De Viedma DG, Herranz M, Al-Hajoj S, Rastogi N, Garzelli C, Tortoli E, Suffys PN, Van Soolingen D, Refregier G, Sola C. The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method:providing guidelines for Quality Assurance when working on membranes. BMC Infectious Diseases, 2011, 11:110.
    [42] Shariat N, Dudley EG. CRISPRs:molecular signatures used for pathogen subtyping. Applied and Environmental Microbiology, 2014, 80(2):430-439.
    [43] Xie J, Zhou FF, Xu GG, Mai GQ, Hu J, Wang GQ, Li F. Genome-wide screening of pathogenicity islands in Mycobacterium tuberculosis based on the genomic barcode visualization. Molecular Biology Reports, 2014, 41(9):5883-5889.
    [44] Huang QQ, Luo HP, Liu MQ, Zeng J, Abdalla AE, Duan XK, Li QM, Xie JP. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2(Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis. Infection, Genetics and Evolution, 2016, 40:295-301.
    [45] Zhai XQ, Bao L, Luo T, Peng X, Sun CF, Yang GP. Effect of the expression of iNOS Induced by Mycobacterium tuberculosis CRISPR-associated Csm4(Rv2820c) on intracellular viability of Mycobacterium smegmatis. Journal of Sichuan University (Medical Science Edition), 2018, 49(3):319-324. (in Chinese) 翟小倩, 鲍朗, 罗涛, 彭璇, 孙长峰, 杨国平. 结核杆菌CRISPR-associated Csm4(Rv2820c)诱导iNOS表达对耻垢杆菌胞内存活的影响. 四川大学学报(医学版), 2018, 49(3):319-324.
    [46] An Y, Park KH, Lee M, Kim TJ, Woo EJ. Crystal structure of the Csm5 subunit of the type III-A CRISPR-Cas system. Biochemical and Biophysical Research Communications, 2020, 523(1):112-116.
    [47] Takeshita D, Sato M, Inanaga H, Numata T. Crystal structures of Csm2 and Csm3 in the Type III-A CRISPR-Cas effector complex. Journal of Molecular Biology, 2019, 431(4):748-763.
    [48] Mokrousov I, Limeschenko E, Vyazovaya A, Narvskaya O. Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnology Journal, 2007, 2(7):901-906.
    [49] Grüschow S, Athukoralage JS, Graham S, Hoogeboom T, White MF. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence. Nucleic Acids Research, 2019, 47(17):9259-9270.
    [50] Gunderson FF, Cianciotto NP. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio, 2013, 4(2):e00074-13.
    [51] Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Molecular Microbiology, 2011, 79(2):484-502.
    [52] Wei JW, Lu N, Li ZY, Wu XY, Jiang T, Xu L, Yang C, Guo S. The Mycobacterium tuberculosis CRISPR-Associated Cas1 Involves persistence and tolerance to anti-tubercular Drugs. BioMed Research International, 2019, 2019:7861695.
    [53] Freidlin PJ, Nissan I, Luria A, Goldblatt D, Schaffer L, Kaidar-Shwartz H, Chemtob D, Dveyrin Z, Head SR, Rorman E. Structure and variation of CRISPR and CRISPR-flanking regions in deleted-direct repeat region Mycobacterium tuberculosis complex strains. BMC Genomics, 2017, 18(1):168.
    [54] Lam JT, Yuen KY, Ho PL, Weng XH, Zhang WH, Chen S, Yam WC. Truncated Rv2820c enhances mycobacterial virulence ex vivo and in vivo. Microbial Pathogenesis, 2011, 50(6):331-335.
    [55] Zhai XQ, Luo T, Peng X, Ma PJ, Wang CH, Zhang CX, Suo J, Bao L. The truncated Rv2820c of Mycobacterium tuberculosis Beijing family augments intracellular survival of M. smegmatis by altering cytokine profile and inhibiting NO generation. Infection, Genetics and Evolution, 2018, 59:75-83.
    [56] Rindi L, Lari N, Garzelli C. Genes of Mycobacterium tuberculosis H37Rv downregulated in the attenuated strain H37Ra are restricted to M. tuberculosis complex species. The New Microbiologica, 2001, 24(3):289-294.
    [57] Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, Leclerc C, Bentley SD, Stinear TP, Brisse S, Medigue C, Parkhill J, Cruveiller S, Brosch R. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature Genetics, 2013, 45(2):172-179.
    [58] Ouellette SP. Feasibility of a conditional knockout system for Chlamydia based on CRISPR interference. Frontiers in Cellular and Infection Microbiology, 2018, 8:59.
    [59] Choudhary E, Thakur P, Pareek M, Agarwal N. Gene silencing by CRISPR interference in mycobacteria. Nature Communications, 2015, 6:6267.
    [60] Singh AK, Carette X, Potluri LP, Sharp JD, Xu RF, Prisic S, Husson RN. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Research, 2016, 44(18):e143.
    [61] Zhang YH, Qian L, Wei WJ, Wang Y, Wang BN, Lin PP, Liu WC, Xu LZ, Li X, Liu DM, Cheng SD, Li JF, Ye YX, Li H, Zhang XH, Dong YM, Zhao XJ, Liu CH, Zhang HM, Ouyang Q, Lou CB. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains. ACS Synthetic Biology, 2017, 6(2):211-216.
    [62] Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, Pritchard JR, Church GM, Rubin EJ, Sassetti CM, Schnappinger D, Fortune SM. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2:16274.
    [63] Xiao GH, He X, Zhang S, Liu YY, Liang ZH, Liu HM, Zhang JJ, Ou M, Cai SH, Lai WJ, Zhang TY, Ren LL, Zhang GL. Cas12a/Guide RNA-Based platform for rapid and accurate identification of major Mycobacterium species. Journal of Clinical Microbiology, 2020, 58(2):e01368-19.
    [64] Cui L, Bikard D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Research, 2016, 44(9):4243-4251.
    [65] Sun BB, Yang JJ, Yang S, Ye RD, Chen DJ, Jiang Y. A CRISPR-Cpf1-Assisted Non-Homologous end joining genome editing system of Mycobacterium smegmatis. Biotechnology Journal, 2018, 13(9):1700588.
    [66] Doerflinger M, Forsyth W, Ebert G, Pellegrini M, Herold MJ. CRISPR/Cas9-The ultimate weapon to battle infectious diseases? Cellular Microbiology, 2017, 19(2):e12693.
    [67] McNeil MB, Cook GM. Utilization of CRISPR interference to validate MmpL3 as a drug target in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63(8):e00629-19.
    [68] Kim JS, Cho DH, Park M, Chung WJ, Shin D, Ko KS, Kweon DH. CRISPR/Cas9-Mediated Re-Sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-Lactamases. Journal of Microbiology and Biotechnology, 2016, 26(2):394-401.
    [69] Liu HB, Zhu BH, Liang BB, Xu XB, Qiu SF, Jia LL, Li P, Yang L, Li YR, Xiang Y, Xie J, Wang LG, Yang CJ, Sun YS, Song HB. A novel mcr-1 variant carried by an IncI2-Type plasmid identified from a multidrug resistant enterotoxigenic Escherichia coli. Frontiers in Microbiology, 2018, 9:815.
    [70] Greene AC. CRISPR-Based antibacterials:transforming bacterial defense into offense:(Trends in Biotechnology 36, 127-130, 2018). Trends in Biotechnology, 2018, 36(12):1299.
    [71] Ai JW, Zhou, X, Xu T, Yang ML, Chen YY, He GQ, Pan N, Cai YW, Li YJ, Wang XR, Su H, Wang T, Zeng WQ, Zhang WH. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerging Microbes & Infections, 2019, 8(1):1361-1369.
    [72] Rock J. Tuberculosis drug discovery in the CRISPR era. PLoS Pathogens, 2019, 15(9):e1007975.
    [73] Luo ML, Mullis AS, Leenay RT, Beisel CL. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Research, 2015, 43(1):674-681.
    [74] Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 2014, 5(1):e00928-13.
    [75] Hidalgo-Cantabrana C, Goh YJ, Pan M, Sanozky-Dawes R, Barrangou R. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(32):15774-15783.
    [76] Zhang Y, Yang J, Bai GC. Regulation of the CRISPR-Associated genes by Rv2837c (CnpB) via an orn-like activity in tuberculosis complex mycobacteria. Journal of Bacteriology, 2018, 200(8):e00743-17.
    [77] Broxmeyer L, Sosnowska D, Miltner E, Chacón O, Wagner D, McGarvey J, Barletta RG, Bermudez LE. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium:a model for phage therapy of intracellular bacterial pathogens. The Journal of Infectious Diseases, 2002, 186(8):1155-1160.
    [78] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962):167-170.
    [79] van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiology and Molecular Biology Reviews, 2016, 80(3):745-763.
    [80] Lin P, Qin SG, Pu QQ, Wang ZH, Wu Q, Gao P, Schettler J, Guo K, Li RP, Li GP, Huang CH, Wei YQ, Gao GF, Jiang JX, Wu M. CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Molecular Cell, 2020, 78(5):850-861.E5.
    [81] Azam AH, Tanji Y. Bacteriophage-host arm race:an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Applied Microbiology and Biotechnology, 2019, 103(5):2121-2131.
    [82] Bao J, Wu NN, Zeng YG, Chen LG, Li LL, Yang L, Zhang YY, Guo MQ, Li LS, Li J, Tan DM, Cheng MJ, Gu JM, Qin JH, Liu JZ, Li SR, Pan GQ, Jin X, Yao BX, Guo XK, Zhu TY, Le S. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerging Microbes & Infections, 2020, 9(1):771-774.
    [83] Bua A, Rosu V, Molicotti P, Das Gupta SK, Ahmed N, Zanetti S, Sechi LA. Phages specific for mycobacterial lipoarabinomannan help serodiagnosis of tuberculosis. The New Microbiologica, 2009, 32(3):293-296.
    [84] Sula L, Sulová J, Stolcpartová M. Therapy of experimental tuberculosis in guinea pigs with mycobacterial phages DS-6A, GR-21 T, My-327. Czechoslovak Medicine, 1981, 4(4):209-214.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Hui Li, Jianping Xie. CRISPR/Cas system and implications for novel measures against tuberculosis. [J]. Acta Microbiologica Sinica, 2021, 61(2): 300-314

Copy
Share
Article Metrics
  • Abstract:351
  • PDF: 877
  • HTML: 2144
  • Cited by: 0
History
  • Received:March 31,2020
  • Revised:July 16,2020
  • Online: June 03,2021
Article QR Code