Unraveling MpigE involved in pigment biosynthesis in Monascus purpureus Mp-21 by RNA-Seq transcriptome profiling analyses
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] To analyze the effect of MpigE (one of Monascus purpureus genes) deletion on the transcription of Monascus pigments. [Methods] The wild-type Monascus purpureus Mp-21 and the MpigE were analyzed by high-throughput transcriptome sequencing, annotation, enrichment of gene function analysis and gene expression differences pathway enrichment analysis. The transcription level revealed the reason for the change of pigment production after MpigE deletion. [Results] By RNA-seq sequencing, 7.5-8.5Gb of original data were obtained from each sample, and 7219 Unigenes were obtained after de novo assembly, among which 5692 were successfully annotated. The enrichment analysis of differentially expressed genes showed that compared with the wild-type strain of Mp-21, MpigE had 199 up-regulated differentially expressed genes and 293 down-regulated differentially expressed genes. [Conclusion] The deletion of MpigE can affect the biosynthesis of pigment by promoting the expression of central carbon metabolism and acetyl-CoA metabolism-related genes in Monascus.

    Reference
    [1] Zhang JZ. Microbial taxonomy. Shanghai:Fudan University Press, 1990:178-179. (in Chinese) 张纪忠. 微生物分类学. 上海:复旦大学出版社, 1990:178-179.
    [2] Clement A. 一株紫色红曲霉液态发酵产红曲色素的特性研究. 西北师范大学硕士学位论文, 2019:1-20.
    [3] Wang TH, Lin TF. Monascus rice products. Advances in Food and Nutrition Research, 2007, 53:123-159.
    [4] Mondal S, Pandit SG, Puttananjaiah MH, Harohally NV, Dhale MA. Structural and functional characterization of new pigment molecule Monashin from Monascus purpureus CFR410-11. Process Biochemistry, 2019, 82:173-178.
    [5] Su NW, Lin YL, Lee MH, Ho CY. Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. Journal of Agricultural and Food Chemistry, 2005, 53(6):1949-1954.
    [6] Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H. Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chemistry & Biodiversity, 2005, 2(10):1305-1309.
    [7] Hsu LC, Hsu YW, Liang YH, Liaw CC, Kuo YH, Pan TM. Induction of apoptosis in human breast adenocarcinoma cells MCF-7 by monapurpyridine A, a new azaphilone derivative from Monascus purpureus NTU 568. Molecules (Basel, Switzerland), 2012, 17(1):664-673.
    [8]
    [8] Shi YC, Pan TM, Liao VHC. Monascin from Monascus-fermented products reduces oxidative stress and amyloid-β toxicity via DAF-16/FOXO in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry, 2016, 64(38):7114-7120.
    [9] 郝雪言. 红花黄色素对Tau蛋白过度磷酸化所致阿尔兹海默症的保护作用研究. 烟台大学硕士学位论文, 2018:1-25.
    [10] Chen WP, He Y, Zhou YX, Shao YC, Feng YL, Li M, Chen FS. Edible filamentous fungi from the species Monascus:early traditional fermentations, modern molecular biology, and future genomics. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5):555-567.
    [11] Hajjaj H, Klaébé A, Loret MO, Goma G, Blanc PJ, François J. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Applied and Environmental Microbiology, 1999, 65(1):311-314.
    [12] Yang Y, Liu B, Du XJ, Li P, Liang B, Cheng XZ, Du LC, Huang D, Wang L, Wang S. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Scientific Reports, 2015, 5:8331.
    [13] Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Applied Microbiology and Biotechnology, 2013, 97(14):6337-6345.
    [14] Chen WP, Chen RF, Liu QP, He Y, He K, Ding XL, Kang LJ, Guo XX, Xie NN, Zhou YX, Lu YY, Cox RJ, Molnár I, Li M, Shao YC, Chen FS. Orange, red, yellow:biosynthesis of azaphilone pigments in Monascus fungi. Chemical Science, 2017, 8(7):4917-4925.
    [15] Liu QP, Xie NN, He Y, Wang Li, Shao YC, Zhao HZ, Chen FS. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Applied Microbiology and Biotechnology, 2014, 98(1):285-296.
    [16] Liu J, Zhou YX, Yi T, Zhao MM, Xie NN, Lei M, Liu QP, Shao YC, Chen FS. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7. Applied Microbiology and Biotechnology, 2016, 100(16):7037-7049.
    [17] Balakrishnan B, Park SH, Kwon HJ. A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnology Letters, 2017, 39(1):163-169.
    [18] Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 2013, 8(8):1494-1512.
    [19] Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17):3389-3402.
    [20] Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS:an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 2007, 35(S2):W182-W185.
    [21] Marchler-Bauer A, Zheng CJ, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu SN, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang DC, Bryant SH. CDD:conserved domains and protein three-dimensional structure. Nucleic Acids Research, 2013, 41(D1):D348-D352.
    [22] Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1):27-30.
    [23] Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database:a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28(1):33-36.
    [24] Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database:towards a more sustainable future. Nucleic Acids Research, 2016, 44(D1):D279-D285.
    [25] Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 2017, 14(4):417-419.
    [26] Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15):2114-2120.
    [27] Wang JQ, Zhang Q, Jiang B, Lv MX, Jiang DH. Deletion of PigE, a pigment biosynthesis-related gene, upregulates the varieties and yields of yellow pigments in Monascus purpureus Mp-21. Acta Microbiologica Sinica, 2019, 59(8):1547-1560. (in Chinese) 王嘉琦, 张琪, 江北, 吕梦霞, 蒋冬花. 色素生物合成相关PigE基因的缺失对紫色红曲霉Mp-21黄色素种类和产量的影响. 微生物学报, 2019, 59(8):1547-1560.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Feng Ni, Yunzhang Ding, Jingjing Ma, Jiaqi Wang, Donghua Jiang. Unraveling MpigE involved in pigment biosynthesis in Monascus purpureus Mp-21 by RNA-Seq transcriptome profiling analyses. [J]. Acta Microbiologica Sinica, 2021, 61(3): 695-706

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 26,2020
  • Revised:June 28,2020
  • Online: March 05,2021
Article QR Code