Characteristics of Fe(III) reduction by Fe(III)-reducing bacterium Clostridium butyricum LQ25 under the condition of electron shuttles
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] This study aimed to investigate the characteristics of microbial Fe(III) reduction under the condition of adding electron shuttles. [Methods] The effects of anthraquinone-2-sulfonic acid (AQS) and riboflavin on cell growth and Fe(II) concentration by a fermenting bacterium Clostridium butyricum LQ25 were investigated. [Results] The results showed that Fe(II) concentrations were significantly different under the series of electron shuttle concentrations, Fe(OH)3 as electron acceptor and glucose as electron donor. The highest Fe(II) concentration under Fe(III)-reducing conditions by strain LQ25 was 12.95±0.08 mg/L at the AQS concentration of 0.5 mmol/L, which was 88% higher compared to the control without added AQS. When riboflavin was added as the electron shuttle, Fe(II) concentration was 11.06±0.04 mg/L at the riboflavin concentration of 100 mg/L, which was 61% higher compared to the control. The adding of electron shuttles could change the concentration of butyrate and acetic acid in fermentation products by strain LQ25, with the increasing of relative content of acetic acid. [Conclusion] The adding of electron shuttle AQS and riboflavin could significantly promote microbial Fe(III) reduction, which will provide the experimental evidence for the mechanism of extracellular electron transfer by fermentative Fe(III)-reducing bacteria.

    Reference
    [1] Si YB, Wang J. Influence of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. Environmental Science, 2015, 36(9):3533-3542. (in Chinese) 司友斌, 王娟. 异化铁还原对土壤中重金属形态转化及其有效性影响. 环境科学, 2015, 36(9):3533-3542.
    [2] Wu K, Yang YR, Zhou C, Jiang J, Si YB. Organic acids enhanced and Fe(III) reduction mediated sulfamethoxazole degradation by Shewanella oneidensis MR-1. Acta Scientiae Circumstantiae, 2019, 39(7):2117-2124. (in Chinese) 吴康, 杨玉蓉, 周晨, 蒋瑾, 司友斌. 有机酸强化Fe(Ⅲ)还原介导的Shewanella oneidensis MR-1降解磺胺甲噁唑. 环境科学学报, 2019, 39(7):2117-2124.
    [3] He YX, Gong YF, Su YM, Zhang YL, Zhou XF. Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens:Environmental factors and electron transfer flow studies. Chemosphere, 2019, 221:793-801.
    [4] Si YB, Zou Y, Liu XH, Si XY, Mao JD. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 2015, 122:206-212.
    [5] Zhang YC, Xiao LL, Wang OM, Liu FH. Hydrogen-producing and electrochemical properties of a dissimilatory Fe(III) reducer Clostridium bifermentans EZ-1. Acta Microbiologica Sinica, 2018, 58(4):525-537. (in Chinese) 张月超, 肖雷雷, 王欧美, 刘芳华. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性. 微生物学报, 2018, 58(4):525-537.
    [6] Li GY, Zeng X, Shao ZZ. Dissimilatory iron reducing microorganisms in South Mid-Atlantic Ridge hydrothermal fields and their mineralized products. Acta Microbiologica Sinica, 2019, 59(7):1295-1306. (in Chinese) 李光玉, 曾湘, 邵宗泽. 南大西洋中脊热液区异化铁还原微生物及其矿化产物分析. 微生物学报, 2019, 59(7):1295-1306.
    [7] 韩蕊. Shewanella oneidensis MR-1外膜细胞色素c介导的胞外电子传递过程研究. 华南理工大学博士学位论文, 2016.
    [8] Liu PC, Zhu WW, Xiao X. Metabolic networks of electricigens Shewanella for anaerobic respiration. Microbiology China, 2015, 42(11):2238-2244. (in Chinese) 刘鹏程, 朱雯雯, 肖翔. 产电微生物Shewanella菌厌氧呼吸代谢网络研究进展. 微生物学通报, 2015, 42(11):2238-2244.
    [9] Wu YD, Li FB, Liu TX. Mechanism of Extracellular electron transfer among microbe-humus-mineral in soil:A review. Acta Pedologica Sinica, 2016, 53(2):277-291. (in Chinese) 吴云当, 李芳柏, 刘同旭. 土壤微生物-腐殖质-矿物间的胞外电子传递机制研究进展. 土壤学报, 2016, 53(2):277-291.
    [10] Sun D, Wan XY, Liu WZ, Xia X, Huang FL, Wang AJ, Smith JA, Dang Y, Holmes DE.. Characterization of the genome from Geobacter anodireducens, a strain with enhanced current production in bioelectrochemical systems. RSC Advances, 2019, 9(44):25890-25899.
    [11] Liu X, Jing XY, Ye Y, Zhan J, Ye J, Zhou SG. Bacterial vesicles mediate extracellular electron transfer. Environmental Science & Technology Letters, 2020, 7(1):27-34.
    [12] Dalla Vecchia E, Suvorova EI, Maillard J, Bernier-Latmani R. Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1. Geobiology, 2014, 12(1):48-61.
    [13] Li X, Zeng X, Qiu DH, Zhang Z, Zhang XB, Shao ZZ. Extracellular electron transfer in fermentative bacterium Anoxybacter fermentans DY22613T isolated from deep-sea hydrothermal sulfides. Science of the Total Environment, 2020, 722:137723.
    [14] Liu JC, Liu FH, Zhang YC, Meng DL, Wang XM, Xiao LL. Iron and manganese oxides enhance electron output efficiency of Clostridium pasteurianum. Microbiologica China, 2020, 47(1):24-34. (in Chinese) 刘进超, 刘芳华, 张月超, 孟德龙, 王学明, 肖雷雷. 铁锰氧化物提高巴斯德梭菌电子输出率. 微生物学通报, 2020, 47(1):24-34.
    [15] Newman DK, Kolter R. A role for excreted quinones in extracellular electron transfer. Nature, 2000, 405(6782):94-97.
    [16] Wang HM, Liu S, Liu D. Comparison between redective dissolution of jarosite by sulfate reducing bacteria and dissimilatory iron reducing bacteria. Earth Science, 2015, 40(2):305-316. (in Chinese) 王红梅, 刘烁, 刘邓. 硫酸盐还原菌及异化铁还原菌对黄钾铁矾还原作用的对比. 地球科学, 2015, 40(2):305-316.
    [17] Liu W, Wu YD, Liu XT, Li FB, Dong H, Jing MQ. Influence of incubation temperature on 9,10-anthraquinone-2-sulfonate (aqs)-mediated extracellular electron transfer. Frontiers in Microbiology, 2019, 10:464. DOI:10.3389/fmicb.2019.00464.
    [18] You LX, Liu LD, Xiao Y, Dai YF, Chen BL, Jiang YX, Zhao F. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry, 2018, 119:196-202.
    [19] Zhou C, Wang HQ, Si YB, Wu K, Yousaf A. Electron shuttles enhance the degradation of sulfamethoxazole coupled with Fe(III) reduction by Shewanella oneidensis MR-1. Environmental Toxicology and Pharmacology, 2018, 62:156-163.
    [20] Canstein H, Ogawa J, Shimizu S, Lloyd JR. Secretion of flavins by Shewanella Species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 2008, 74(3):615-623.
    [21] Wang PP, Dong FQ, He HC, Liu MX, Luo ZP, Wang XH, Zhou L, Huo TT. Research on riboflavin and AQS mediated P25 photocatalytic reduction of uranium (VI). Industrial Minerals & Processing, 2019, 48(4):59-64. (in Chinese) 王萍萍, 董发勤, 何辉超, 刘明学, 罗昭培, 王旭辉, 周磊, 霍婷婷. 核黄素及AQS介导P25光电子还原铀(VI)研究. 化工矿物与加工, 2019, 48(4):59-64.
    [22] Liu HY, Wang S. Characteristics of chromate reduction by Fe(III) reduction using mixed bacteria from marine sediment. Marine Sciences, 2019, 43(5):19-26. (in Chinese) 刘洪艳, 王珊. 海洋沉积物中异化铁还原细菌还原重金属Cr(VI)研究. 海洋科学, 2019, 43(5):19-26.
    [23] Wang JC, Lin Y, Sun BL. Localization and characterization of Fe(Ⅲ) reductase of Desulfovibrio dechloracetivorans strain SF3. Journal of University of Science and Technology of China, 2009, 39(4):337-343. (in Chinese) 王佳晨, 林洋, 孙宝林. Desulfovibrio dechloracetivorans strain SF3三价铁还原酶的定位和性质的研究. 中国科学技术大学学报, 2009, 39(4):337-343.
    [24] Bai YG, Mellage A, Cirpka OA, Sun TR, Angenent LT, Haderlein SB, Kappler A. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales. Environmental Science and Technology, 2020, 54(7):4131-4139.
    [25] Gerlach R, Field EK, Viamajala S, Peyton BM, Apel WA, Cunningham AB. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6. Biodegradation, 2011, 22(5):983-995.
    [26] Zhu WH, He XY, Wang RH, Huang TL. Influence of quinone organic matter on the characteristics of the microbial dissimilatory reduction of goethite. Acta Scientiae Circumstantiae, 2014, 34(9):2286-2291. (in Chinese) 朱维晃, 何晓娅, 王瑞华, 黄廷林. 蒽醌类有机质对针铁矿异化还原解离特征影响. 环境科学学报, 2014, 34(9):2286-2291.
    [27] Liu L, Yang Y, Li XF, Zhang WY, Feng JS. Relationship between the properties and the electron mediating effect of electron shuttles for the bioreduction of goethite. Journal of Changzhou University:Natural Science Edition, 2016, 28(6):86-94. (in Chinese) 刘亮, 杨彦, 李晓芳, 张文艺, 冯俊生. 铁生物还原过程电子介体电子穿梭效应与其性质关系研究. 常州大学学报:自然科学版, 2016, 28(6):86-94.
    [28] 王瑞华. "醌-针铁矿-微生物"相互作用特征及其对有机污染物降解的初步试验研究. 西安建筑科技大学博士学位论文, 2015.
    [29] Nevin KP, Lovley DR. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environmental Science & Technology, 2000, 34(12):2472-2478.
    [30] Liu AK, Gu MQ, Wei SZ, Wu GX. Enhanced anaerobic degradation of direct blue 15 by anthraquinone-2,6-disulfonate (AQDS). Water Purification Technology, 2019, 38(2):63-68. (in Chinese) 刘爱科, 顾梦琪, 魏书斋, 吴光学. 蒽醌-2,6-二磺酸(AQDS)强化厌氧降解直接蓝15. 净水技术, 2019, 38(2):63-68.
    [31] Zhou YH, Nie ZY, Xia X, Xia JL, Liu LZ, Wang N. Microbe-mediated iron-sulfur reduction coupled adsorption behavior of As(V) in water. Technology of Water Treatment, 2018, 44(8):35-40. (in Chinese) 周雨行, 聂珍媛, 夏旭, 夏金兰, 刘李柱, 王娜. 微生物铁硫还原耦合水体中As(V)吸附行为研究. 水处理技术, 2018, 44(8):35-40.
    [32] Li SL, Wang YJ, Chen YC, Liu SM, Yu CP. Chemical characteristics of electron shuttles affect extracellular electron transfer:Shewanella decolorationis NTOU1 Simultaneously exploiting acetate and mediators. Frontiers in microbiology, 2019, 10:399.
    [33] Wu C, Cheng YY, Li BB, Li WW, Li DB, Yu HQ. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Bioresource Technology, 2013, 136:711-714.
    [34] Dong YR, Sanford RA, Chang YJ, McInerney MJ, Fouke BW. Hematite reduction buffers acid generation and enhances nutrient uptake by a fermentative iron reducing bacterium, Orenia metallireducens strain Z6. Environmental Science & Technology, 2017, 51(1):232-242.
    [35] Lee J, Jang YS, Han MJ, Kim JY, Lee SY. Deciphering Clostridium tyrobutyricum metabolism based on the whole-genome sequence and proteome analyses. mBio, 2016, 7(3):e00743-16. DOI:10.1128/mbio.00743-16.
    [36] Dwidar M, Park JY, Mitchell RJ, Sang. The future of butyric acid in industry. The Scientific World Journal, 2012, 2012:1-10.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Hongyan Liu, Yuan Yuan, Shan Zhang, Kaiqiang Li. Characteristics of Fe(III) reduction by Fe(III)-reducing bacterium Clostridium butyricum LQ25 under the condition of electron shuttles. [J]. Acta Microbiologica Sinica, 2021, 61(6): 1496-1506

Copy
Share
Article Metrics
  • Abstract:472
  • PDF: 1896
  • HTML: 2431
  • Cited by: 0
History
  • Received:January 20,2021
  • Revised:April 07,2021
  • Online: June 05,2021
Article QR Code