Control of postharvest fruits and vegetables diseases by microbial volatile compounds
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [53]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the increasingly prominent disadvantages of chemical fungicides, biological control has gradually attracted more attention for controlling disease of postharvest fruits and vegetables. Among biological control agents, volatile organic compounds (VOCs) produced by different microorganisms can significantly inhibit the growth of various pathogens, and effectively control postharvest fruit and vegetable decay. Thus, VOCs synthetized by microorganisms are favored due to their safety, effectiveness, environmental harmlessness, easy degradation and no residue. Therefore, we review here the diversity of microorganisms with the ability to produce VOCs, the diversity of VOCs from microorganisms, the antifungal activities of VOCs and their possible related mechanisms responsible for the biocontrol effect, to provide an basis to develop biocontrol agents.

    Reference
    [1] 毕阳. 果蔬采后病害:原理与控制. 北京:科学出版社, 2016.
    [2] Calvo H, Mendiara I, Arias E, Gracia AP, Blanco D, Venturini ME. Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biology and Technology, 2020(166):111208.
    [3] Ye XF, Chen Y, Ma SY, Yuan T, Wu YX, Li YX, Zhao YQ, Chen SY, Zhang YW, Li LY, Li ZK, Huang Y, Cao H, Cui ZL. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiology, 2020(91):103502.
    [4] Junior WJFL, Binati RL, Felis GE, Slaghenaufi D, Ugliano M, Torriani S. Volatile organic compounds from Starmerella bacillaris to control gray mold on apples and modulate cider aroma profile. Food Microbiology, 2020(89):103446.
    [5] Wallace RL. Biological control of common postharvest diseases of apples with Pseudomonas fluorescens and potential modes of action. Doctor Dissertation of University of British Columbia, 2018.
    [6] Lugtenberg B, Rozen DE, Kamilova F. Wars between microbes on roots and fruits. F1000Research, 2017(6):343.
    [7] Sapers GM, Gorny JR, Yousef AE. 果蔬微生物学. 陈卫, 田丰伟, 译. 北京:中国轻工业出版社, 2011.
    [8] Zhou JY, Li X, Zheng JY, Dai CC. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. Plant Physiology and Biochemistry, 2016(101):132-140.
    [9] Morath SU, Hung R, Bennett JW. Fungal volatile organic compounds:a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 2012, 26(2/3):73-83.
    [10] Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B. mVOC:a database of microbial volatiles. Nucleic Acids Research, 2014, 42(Database issue):D744-D748.
    [11] McCain AH. A volatile antibiotic produced by Streptomyces griseus. Phytopathology, 1966, 56(2):150.
    [12] Li QL, Ning P, Zheng L, Huang JB, Li GQ, Hsiang T. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on citrus microcarpa. Postharvest Biology and Technology, 2010, 58(2):157-165.
    [13] 李其利. 链霉菌JK-1的鉴定及其防病潜能和防病机制的研究. 华中农业大学博士学位论文, 2011.
    [14] 吕昂. 链霉菌3-10抗真菌代谢产物鉴定及防病潜力评估. 华中农业大学博士学位论文, 2017.
    [15] Boukaew S, Petlamul W, Bunkrongcheap R, Chookaew T, Kabbua T, Thippated A, Prasertsan P. Fumigant activity of volatile compounds of Streptomyces philanthi RM-1-138 and pure chemicals (acetophenone and phenylethyl alcohol) against anthracnose pathogen in postharvest chili fruit. Crop Protection, 2018(103):1-8.
    [16] Feng FS, Liu JA, Hu LC, Wen RZ, Zhou GY. Analysis of volatile compounds from Bacillus subtilis y13 and its antimicrobial activity. Chinese Journal of Biological Control, 2019, 35(4):597-604. (in Chinese)冯福山, 刘君昂, 胡廉成, 文瑞芝, 周国英. 枯草芽胞杆菌Y13挥发性物质的分析及抑菌活性. 中国生物防治学报, 2019, 35(4):597-604.
    [17] Zheng L, Situ JJ, Zhu QF, Xi PG, Zheng Y, Liu HX, Zhou XF, Jiang ZD. Identification of volatile organic compounds for the biocontrol of postharvest litchi fruit pathogen Peronophythora litchii. Postharvest Biology and Technology, 2019(155):37-46.
    [18] Martins SJ, Faria AF, Pedroso MP, Cunha MG, Rocha MR, Medeiros FHV. Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biological Control, 2019(131):36-42.
    [19] Wallace RL, Hirkala DL, Nelson LM. Postharvest biological control of blue mold of apple by Pseudomonas fluorescens during commercial storage and potential modes of action. Postharvest Biology and Technology, 2017(133):1-11.
    [20] Hernández-León R, Rojas-Solis D, Contreras-Pérez M, Del Carmen Orozco-Mosqueda M, Macías-Rodríguez LI, Reyes-De La Cruz H, Valencia-Cantero E, Santoyo G. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 2015(81):83-92.
    [21] Wang ZR, Mei XF, Du MY, Jiang MY, Zhang HX, Wang KT, Zalán Z, Hegyi F, Kan JQ. Biocontrol of green mold decay in Jincheng citrus fruits by Pseudomonas fluorescens ZX. Acta Microbiologica Sinica, 2019, 59(5):950-964. (in Chinese)王智荣, 梅小飞, 杜木英, 江孟遥, 张洪新, 汪开拓, Zalán Z, Hegyi F, 阚建全. 荧光假单胞菌ZX对采后锦橙绿霉病的防治及其抑菌机制. 微生物学报, 2019, 59(5):950-964.
    [22] 王智荣. 荧光假单胞菌ZX生物防治采后锦橙青霉病和绿霉病研究. 西南大学硕士学位论文, 2019.
    [23] Wang ZR, Mei XF, Du MY, Chen KW, Jiang MY, Wang KT, Zalán Z, Kan JQ. Potential modes of action of Pseudomonas fluorescens ZX during biocontrol of blue mold decay on postharvest citrus. Journal of the Science of Food and Agriculture, 2020, 100(2):744-754.
    [24] 王友升. 拮抗酵母菌与果蔬采后病害防治. 北京:知识产权出版社, 2012.
    [25] Li WH, Zhang HY, Li P, Apaliya MT, Yang QY, Peng YP, Zhang XY. Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biological Control, 2016(103):30-38.
    [26] Toffano L, Fialho MB, Pascholati SF. Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biological Control, 2017(108):77-82.
    [27] Oro L, Feliziani E, Ciani M, Romanazzi G, Comitini F. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. International Journal of Food Microbiology, 2018(265):18-22.
    [28] Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology, 2019(82):70-74.
    [29] Huang R, Huang P, Huang RR, Li GQ. Identification of a yeast strain and effect of its volatile organic compounds on disease control. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(5):903-908. (in Chinese)黄蓉, 黄盼, 黄瑞荣, 李国庆. 一株酵母菌的鉴定及其挥发性物质防病测定. 江西农业大学学报, 2015, 37(5):903-908.
    [30] 郑芳园. 间型假丝酵母C410产生挥发性抗真菌物质的条件优化及其对草莓储藏期病害的防治研究. 华中农业大学硕士学位论文, 2012.
    [31] Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC. Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 2011, 101(7):859-869.
    [32] Hua SST, Beck JJ, Sarreal SBL, Gee W. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Research, 2014, 30(2):71-78.
    [33] Strobel GA, Dirkse E, Sears J, Markworth C. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 2001, 147(11):2943-2950.
    [34] Mitchell AM, Strobel GA, Moore E, Robison R, Sears J. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology, 2010, 156(1):270-277.
    [35] Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Druzhinina IS, Kubicek CP. Muscodor fengyangensis sp. nov. from southeast China:morphology, physiology and production of volatile compounds. Fungal Biology, 2010, 114(10):797-808.
    [36] Pena LC, Jungklaus GH, Savi DC, Ferreira-Maba L, Servienski A, Maia BHLNS, Annies V, Galli-Terasawa LV, Glienke C, Kava V. Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiological Research, 2019(221):28-35.
    [37] Suwannarach N, Kumla J, Bussaban B, Nuangmek W, Matsui K, Lumyong S. Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Protection, 2013(45):63-70.
    [38] Gong AD, Dong FY, Hu MJ, KONG XW, Wei FF, Gong SJ, Zhang YM, Zhang JB, Wu AB, Liao YC. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. Food Control, 2019(106):106718.
    [39] Alijani Z, Amini J, Ashengroph M, Bahramnejad B. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. International Journal of Food Microbiology, 2019(307):108276.
    [40] 张迪. 葡萄灰霉病拮抗酵母菌的筛选及产挥发性抑菌物质特性研究. 石河子大学硕士学位论文, 2018.
    [41] Ghazanfar MU, Hussain M, Hamid MI, Ansari SU. Utilization of biological control agents for the management of postharvest pathogens of tomato. Pakistan Journal of Botany, 2016, 48(5):2093-2100.
    [42] Mercier J, Smilanick JL. Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biological Control, 2005, 32(3):401-407.
    [43] de Boer W, Li XG, Meisner A, Garbeva PV. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiology Ecology, 2019, 95(8):fiz105.
    [44] Massawe VC, Hanif A, Farzand A, Mburu DK, Ochola SO, Wu LM, Tahir HAS, Gu Q, Wu HJ, Gao XW. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology, 2018, 108(12):1373-1385.
    [45] Zhao PY, Li PZ, Wu SY, Zhou MS, Zhi RC, Gao HY. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. AMB Express, 2019, 9(1):119.
    [46] Sa RGW, Hu WZ, Feng K, Xiu ZL, Jiang AL, Lao Y, Li YZ, Long Y, Guan YG, Ji YR, Yang XZ. Antimicrobial mechanisms of essential oils and their components on pathogenic bacteria:a review. Food Science, 2020, 41(11):285-294. (in Chinese)萨仁高娃, 胡文忠, 冯可, 修志龙, 姜爱丽, 老莹, 李元政, 龙娅, 管玉格, 姬亚茹, 杨晓哲. 植物精油及其成分对病原微生物抗菌机理的研究进展. 食品科学, 2020, 41(11):285-294.
    [47] Zhang QH, Huang LL, Lian XK, Zhan ZL, Feng LZ. Research advances in microbial volatiles and their biocontrol potential. Chinese Journal of Ecology, 2017, 36(7):2036-2044. (in Chinese)张清华, 黄丽丽, 连鑫坤, 詹振亮, 冯丽贞. 微生物源挥发性物质及其生物防治作用研究进展. 生态学杂志, 2017, 36(7):2036-2044.
    [48] 尚春雨. β-蒎烯对柑橘青霉病菌的抑菌机理研究. 华中农业大学硕士学位论文, 2017.
    [49] Ma WB, Zhao LL, Zhao WH, Xie YL. (E)-2-hexenal, as a potential natural antifungal compound, inhibits Aspergillus flavus spore germination by disrupting mitochondrial energy metabolism. Journal of Agricultural and Food Chemistry, 2019, 67(4):1138-1145.
    [50] Raza W, Ling N, Liu DY, Wei Z, Huang QW, Shen QR. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiological Research, 2016(192):103-113.
    [51] 司琳媛. 葡萄有孢汉逊酵母(Hanseniaspora uvarum)挥发性代谢物对草莓采后贮藏性能的影响. 南京农业大学硕士学位论文, 2015.
    [52] Wu YC, Zhou JY, Li CG, Ma Y. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen, 2019, 8(8):e00813.
    [53] Wonglom P, Ito SI, Sunpapao A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology, 2020(43):100867.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Tao Zhong, Zhirong Wang, Muying Du. Control of postharvest fruits and vegetables diseases by microbial volatile compounds. [J]. Acta Microbiologica Sinica, 2021, 61(7): 1771-1785

Copy
Share
Article Metrics
  • Abstract:580
  • PDF: 1238
  • HTML: 1839
  • Cited by: 0
History
  • Received:June 30,2020
  • Revised:August 14,2020
  • Online: July 07,2021
Article QR Code