Identification and enzyme profiling of black soldier fly egg commensal Bacillus velezensis and its effect on food waste bioconversion
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    [Objective] A strain producing multiple enzymes was isolated from the egg surface of Hermetia illucens L. Further, the optimal growth conditions, enzyme-producing characteristics, and the effects of the strain on the food waste decomposition efficiency of Hermetia illucens L. were explored.[Methods] Enzyme-producing strains were obtained from various selective media. The optimal growth conditions, enzyme-producing characteristics, and the effects of it on the food waste treatment decomposition efficiency of Hermetia illucens L. were determined by the single-factor experiment. [Results] In this study, a Hermetia illucens L. egg-surface commensal bacterium was named as Bacillus velezensis EEAM 10B by morphological observation, biophysiological and biochemical tests, and 16S rDNA sequence analysis. The bacteria number was 3.1×109 CFU/mL under the optimum growth conditions:40℃, 200 r/min, pH 7.0, 10 g/L yeast extract, 10 g/L glucose for 16 h. Approximately 95.8% single-terminal spores were formed after 24 h cultivation. Enzymes producing results are as follows:xylanase activity was the highest, followed by the protease, cellulase, pectinase, amylase, and phytase. Adding the Bacillus velezensis EEAM 10B spores to the food waste at a dosage of 1×106 CFU/g significantly (P<0.05) improved the food conversion efficiency of black soldier fly larvae in both sterilized and non-sterilized food waste groups, reaching 13.4% and 13.54%, respectively, whereas the mass reduction rates did not present differences (P>0.05). Furthermore, in the sterilized food waste group, the survival rate of larvae and the prepupae weight were significantly increased to 95% and 0.1437 g per one, while the pupation rate reached 92.57% in the non-sterilized food waste group. [Conclusion] B. velezensis EEAM 10B strain can produce a variety of enzymes, and it has potential application value in the treatment of food waste with the black soldier fly.

    Reference
    [1] Beskin KV, Holcomb CD, Cammack JA, Crippen TL, Knap AH, Sweet ST, Tomberlin JK. Larval digestion of different manure types by the black soldier fly (Diptera:Stratiomyidae) impacts associated volatile emissions. Waste Management:New York, N Y, 2018(74):213-220.
    [2] Nguyen TTX, Tomberlin JK, Vanlaerhoven S. Ability of black soldier fly (Diptera:Stratiomyidae) larvae to recycle food waste. Environmental Entomology, 2015, 44(2):406-410.
    [3] Gunawan A, Erlina S, Samudera R, Syarif DM, Noor MY, Lantu AX. Effect of supplement Maggot Black Soldier Fly live on the percentage of carcass and weight of carcass of male Alabio ducks. IOP Conference Series Earth and Environmental Science, 2018, 207(1):12-21.
    [4] Wang YS, Matan S. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods (Basel, Switzerland), 2017, 6(10):91.
    [5] Yang BR, Vivek, Nemane, Nicole, Grmelova, Zhao A, Anu LU, Louise HE, Deschamps MH, Vandenberg GW, Zhang YM. Insects as Food and Feed:Laws of the European Union, United States, Canada, Mexico, Australia, and China. European Food and Feed Law Review, 2017, 12(1):22-36.
    [6] Kim W, Bae S, Park K, Lee S, Choi Y, Han S, Koh Y. Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera:Stratiomyidae). Journal of Asia-Pacific Entomology, 2011, 14(1):11-14.
    [7] Lee CM, Lee YS, Seo SH, Yoon SH, Kim SJ, Hahn BS, Sim JS, Koo BS. Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia illucens using metagenomic library. Journal of Microbiology and Biotechnology, 2014, 24(9):1196-1206.
    [8] Lee YS, Seo SH, Yoon SH, Kim SY, Hahn BS, Sim JS, Koo BS, Lee CM. Identification of a novel alkaline amylopullulanase from a gut metagenome of Hermetia illucens. International Journal of Biological Macromolecules, 2016(82):514-521.
    [9] Song J, Kim SY, Kim DH, Lee YS, Sim JS, Hahn BS, Lee CM. Characterization of an inhibitor-resistant endo-1, 4-β-mannanase from the gut microflora metagenome of Hermetia illucens. Biotechnology Letters, 2018, 40(9/10):1377-1387.
    [10] Zhan S, Fang GQ, Cai MM, Kou ZQ, Xu J, Cao YH, Bai L, Zhang YX, Jiang YG, Luo XY, Xu J, Xu X, Zheng LY, Yu ZN, Yang H, Zhang ZJ, Wang SB, Tomberlin JK, Zhang JB, Huang YP. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Research, 2020, 30(1):50-60.
    [11] Yu GH, Yang ZH, Xia Q, Chen YF, Cheng P. Effect of chicken manure treated by gut symbiotic bacteria on the growth and development of black solder fly Hermetia illucens. Chinese Bulletin of Entomology, 2010, 47(6):1123-1127. (in Chinese)喻国辉, 杨紫红, 夏嫱, 陈远凤, 程萍. 肠道共生细菌预发酵鸡粪对黑水虻生长发育的影响. 昆虫知识, 2010, 47(6):1123-1127.
    [12] 郭凤达. 亮斑扁角水虻生物学及其幼虫肠道细菌的研究. 山东农业大学硕士学位论文, 2012.
    [13] Yang S, Li Y, Mai YN, Ruan RT, Song AD, Wang FQ, Chen HG. Isolation and identification of egg-associated bacteria of Hermetia illucens (Diptera:Stratiomyidae) and their effects on its adult oviposition behavior. Acta Entomologica Sinica, 2017, 60(2):163-172. (in Chinese)杨森, 李严, 麦艳娜, 阮润田, 宋安东, 王风芹, 陈红歌. 亮斑扁角水虻卵携带细菌的分离鉴定及其对成虫产卵行为影响. 昆虫学报, 2017, 60(2):163-172.
    [14] Xiao XP, Jin P, Cai MM, Zheng LY, Li W, Yu ZN, Zhang JB. Chicken manure co-conversion by Hermetia illucens larvae with non-associated microorganism. Acta Microbiologica Sinica, 2018, 58(6):1116-1125. (in Chinese)肖小朋, 靳鹏, 蔡珉敏, 郑龙玉, 李武, 喻子牛, 张吉斌. 非水虻源微生物与武汉亮斑水虻幼虫联合转化鸡粪的研究. 微生物学报, 2018, 58(6):1116-1125.
    [15] 谢久凤. 亮斑扁角水虻(Hermetia illucens L.)幼虫肠道内纤维素酶活性菌株的筛选与鉴定. 华中农业大学硕士学位论文, 2010.
    [16] 郑龙玉. 卵携带的微生物对亮斑扁角水虻产卵行为和生长发育的影响. 华中农业大学博士学位论文, 2012.
    [17] Rehman KU, Rehman RU, Somroo AA, Cai MM, Zheng LY, Xiao XP, Rehman AU, Rehman A, Tomberlin JK, Yu ZN, Zhang JB. Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. Journal of Environmental Management, 2019, 237:75-83.
    [18] Zhang CW, Cheng K, Zhang X, Liu B, Du HB, Yao S. Taxonomy and functions of Bacillus velezensis a review. Food and Fermentation Industries, 2019, 45(17):258-265. (in Chinese)张彩文, 程坤, 张欣, 刘波, 都海渤, 姚粟. 贝莱斯芽胞杆菌(Bacillus velezensis)分类学及功能研究进展. 食品与发酵工业, 2019, 45(17):258-265.
    [19] Wan WJ, Xue ZY, Zhang ZW, Li XH, Cheng GJ, He DL. Isolation and identification of an alkaline protease producing strain and study on enzymatic properties. Acta Microbiologica Sinica, 2017, 57(5):737-747. (in Chinese)万文结, 薛芷筠, 张泽文, 李晓华, 程国军, 何冬兰. 一株产碱性蛋白酶菌株的筛选鉴定及酶学特性研究. 微生物学报, 2017, 57(5):737-747.
    [20] 刘波. 芽胞杆菌第三卷芽胞杆菌生物学. 北京:科学出版社, 2016.
    [21] Yu J, Zhou XF, Yang SJ, Liu WH, Hu XF. Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE. Applied Microbiology and Biotechnology, 2013, 97(22):9825-9836.
    [22] Roberts MS, Nakamura LK, Cohan FM. Bacillus mojavensis sp. nov. Distinguishable from Bacillus subtilis by Sexual Isolation, Divergence in DNA Sequence, and Differences in Fatty Acid Composition. International Journal of Systematic Bacteriology, 1994, 44(2):256-264.
    [23] Wang L, Chen YF, Yang L. Isolation and identification of amylase-producing Bacillus. Food Research and Development, 2017, 38(6):175-178. (in Chinese)王磊, 陈宇飞, 杨柳. 产淀粉酶芽胞杆菌的分离和鉴定. 食品研究与开发, 2017, 38(6):175-178.
    [24] 刘程程. 芽胞杆菌几种重要酶的酶学特性分析. 福建农林大学硕士学位论文, 2014.
    [25] Zhang DF, Gao YX, Wang YJ, Liu C, Shi CB. Advances in taxonomy, antagonistic function and application of Bacillus velezensis. Microbiology China, 2020, 47(11):3634-3649. (in Chinese)张德锋, 高艳侠, 王亚军, 刘春, 石存斌. 贝莱斯芽胞杆菌的分类、拮抗功能及其应用研究进展. 微生物学通报, 2020, 47(11):3634-3649.
    [26] Cai GL, Zhang F, Ouyang YX, Zhao CS, Peng XH, Jiang AM. Research progress on Bacillus velezensis. Northern Horticulture, 2018(12):162-167. (in Chinese)蔡高磊, 张凡, 欧阳友香, 赵昌松, 彭宣和, 江爱明. 贝莱斯芽胞杆菌(Bacillus velezensis)研究进展. 北方园艺, 2018(12):162-167.
    [27] Ruiz GC. Bacillus velezensis sp. nov. a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1):191-195.
    [28] Shahid M, Adnan N, Sarosh B, Johan M, Erik BR. Genome sequence of a plant-associated bacterium, Bacillus amyloliquefaciens strain UCMB5036. Genome Announcements, 2013, 1(2):111-113.
    [29] Yang K, Si W, Lin H, Lin FR, Yuan J, Chen J. Fermentation condition optimization of Bacillus velezensis TCS001 using response surface methodology. Chinese Journal of Pesticide Science, 2019, 21(4):444-452. (in Chinese)杨可, 司文, 林海, 林方锐, 袁静, 陈杰. 利用响应面分析法优化贝莱斯芽胞杆菌TCS00发酵条件. 农药学学报, 2019, 21(4):444-452.
    [30] 王修启. 木聚糖酶作用的分子营养及内分泌机理初探. 第五届饲料安全与生物技术委员会大会暨第二届全国酶制剂在饲料工业中应用学术与技术研讨会. 2005.
    [31] Mao LC, Zhang SL. Role of pectolytic enzymes and cellulase during ripening and woolly breakdown in peaches. Acta Horticulturae Sinica, 2001, 28(2):107-111. (in Chinese)茅林春, 张上隆. 果胶酶和纤维素酶在桃果实成熟和絮败中的作用. 园艺学报, 2001, 28(2):107-111.
    [32] 曹露. 利用亮斑扁角水虻和微生物联合转化处理畜禽粪便的研究. 华中农业大学硕士学位论文, 2011.
    [33] Chen XD, Ma QG, Ji C, Li MJ. Effect of Bacillus preparation on performance of piglets. China Feed, 2003(16):12-13. (in Chinese)陈旭东, 马秋刚, 计成, 李敏俊. 芽胞杆菌制剂对仔猪生产性能的影响. 中国饲料, 2003(16):12-13.
    [34] Li JB, Cheng TS, Lü WX, Peng P. Effect of dried Bacillus subtilis culture on production performance, egg quality and nutrient digestibility of layers. China Poultry, 2009, 31(4):15-17. (in Chinese)李俊波, 成廷水, 吕武兴, 彭鹏. 枯草芽孢杆菌制剂对蛋鸡生产性能、蛋品质和养分消化率的影响. 中国家禽, 2009, 31(4):15-17.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Xiang Chen, Sijie Zhao, Tingting Liang, Jiran Zhang, Hongge Chen, Sen Yang. Identification and enzyme profiling of black soldier fly egg commensal Bacillus velezensis and its effect on food waste bioconversion. [J]. Acta Microbiologica Sinica, 2021, 61(7): 2121-2135

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 06,2020
  • Revised:February 08,2021
  • Online: July 07,2021
Article QR Code