Plant–associated beneficial Burkholderia
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [86]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Burkholderia spp. is a class of Gram-negative bacteria with a wide geographical and niche distribution. In recent years, with the increasing research on plant associated Burkholderia, more and more evidences suggest that Burkholderia is an important plant-associated beneficial microorganism. Burkholderia could promote plant growth through biological nitrogen fixation, phosphorus solubilizing, to increase nitrogen and phosphorus absorption, production of phytohormones like IAA and antifungal metabolites to inhibit the growth of phytopathogenic microorganisms. All of these make Burkholderia with great application potential in promoting plant growth and health. This article reviews the research progresses of the plant-associated beneficial Burkholderia and discusses its application prospects in agriculture.

    Reference
    [1] Burkholder WH. Three bacterial plant pathogens:Phytomonas caryophylli sp.n., Phytomonas alliicola sp.n., and Phytomonas manihotis (Arthaud-Berthet et Bondar) Viégas. Phytopathology, 1942, 32(2):141-149.
    [2] Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.. Microbiology and Immunology, 1992, 36(12):1251-1275.
    [3] Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environmental Microbiology, 2003, 5(9):719-729.
    [4] Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microbial Ecology, 2012, 63(2):249-266.
    [5] Angus AA, Agapakis CM, Fong S, Yerrapragada S, Santos PEDL, Yang P, Song NN, Kano S, Caballero-Mellado J, De Faria SM, Dakora FD, Weinstock G, Hirsch AM. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS ONE, 2014, 9(1):e83779.
    [6] Compant S, Nowak J, Coenye T, Clement C, Barka EA. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews, 2008, 32(4):607-626.
    [7] Santos PEDL, Bustillos-Cristales R, Caballero-Mellado J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology, 2001, 67(6):2790-2798.
    [8] Martinez-Aguilar L, Diaz R, Pena-Cabriales JJ, Santos PEDL, Dunn MF, Caballero-Mellado J. Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Applied and Environmental Microbiology, 2008, 74(14):4574-4579.
    [9] Caballero-Mellado J, Onofre-Lemus J, Santos PEDL, Martinez-Aguilar L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology, 2007, 73(16):5308-5319.
    [10] Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E. Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, 2001, 33(14):1927-1935.
    [11] Santos AV, Dillon RJ, Dillon VM, Reynolds SE, Samuels RI. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiology Letters, 2004, 239(2):319-323.
    [12] Zhang H, Hanada S, Shigematsu T, Shibuya K, Kamagata Y, Kanagawa T, Kurane R. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(2):743-749.
    [13] Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L. Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia:effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 1998, 27(3):225-237.
    [14] De Oliveira-Longatti SM, De Sousa PM, Marra LM, Ferreira PAA, De Souza Moreira FM. Burkholderia fungorum promotes common bean growth in a dystrophic oxisol. Annals of Microbiology, 2015, 65:1825-1832.
    [15] Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Webb RI, Lakshmanan P, Chan CX, Lim PE, Ragan MA, Schmidt S, Hugenholtz P. A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microbial Biotechnology, 2014, 7(2):142-154.
    [16] Stephen J, Shabanamol S, Rishad KS, Jisha MS. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. Biotechnology, 2015, 5(5):831-837.
    [17] Malviya MK, Li CN, Solanki MK, Singh RK, Htun R, Singh P, Verma KK, Yang LT, Li YR. Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113. PLoS ONE, 2020, 15(4):e0231206.
    [18] Li W, Roberts DP, Dery PD, Meyer SLF, Lohrke S, Lumsden RD, Hebbar KP. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Protection, 2002, 21(2):129-135.
    [19] Parra-Cota FI, Pena-Cabriales JJ, De Los Santos-Villalobos S, Martinez-Gallardo NA, Delano-Frier JP. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS ONE, 2014, 9(2):e88094.
    [20] Aizawa T, Ve NB, Nakajima M, Sunairi M. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(5):1152-1157.
    [21] Castro-González R, Martínez-Aguilar L, Ramírez-Trujillo A, Santos PDEL, Caballero-Mellado J. High diversity of culturable Burkholderia species associated with sugarcane. Plant and Soil, 2011, 345(1):155-169.
    [22] Achouak W, Christen R, Barakat M, Martel MH, Heulin T. Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. International Journal of Systematic Bacteriology, 1999, 49(2):787-794.
    [23] Lin TF, Huang HI, Shen FT, Young CC. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresource Technology, 2006, 97(7):957-960.
    [24] Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 2008, 39(1):151-156.
    [25] Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biology and Fertility of Soils, 2000, 31(3):225-231.
    [26] Coenye T, Laevens S, Willems A, Ohlén M, Hannant W, Govan JRW, Gillis M, Falsen E, Vandamme P. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(3):1099-1107.
    [27] Anandham R, Gandhi PI, Kwon SW, Sa TM, Kim YK, Jee HJ. Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov. Archives of Microbiology, 2009, 191(12):885-894.
    [28] Mattos KA, Pádua VLM, Romeiro A, Hallack LF, Neves BC, Ulisses TMU, Barros CF, Todeschini AR, Previato JO, Mendonça-Previato L. Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. Anais da Academia Brasileira de Ciências, 2008, 80(3):477-493.
    [29] Chen WM, James EK, Coenye T, Chou JH, Barrios E, De Faria SM, Elliott GN, Sheu SY, Sprent JI, Vandamme P. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(8):1847-1851.
    [30] Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia:proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Frontiers in Genetics, 2014, 5:429.
    [31] Chen WM, De Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(5):1055-1059.
    [32] Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, De Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytologist, 2007, 173(1):168-180.
    [33] Ma W, Guinel FC, Glick BR. Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology, 2003, 69(8):4396-4402.
    [34] Sun YL, Cheng ZY, Glick BR. The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiology Letters, 2009, 296(1):131-136.
    [35] Gong AD, Zhu ZY, Lu YN, Wan HY, Wu NN, Cheelo D, Gong SJ, Wen ST, Hou X. Functional analysis of Burkholderia pyrrocinia WY6-5 on phosphate solubilizing, antifungal and growth-promoting activity of maize. Scientia Agricultura Sinica, 2019, 52(9):1574-1586. (in Chinese) 宫安东, 朱梓钰, 路亚南, 万海燕, 吴楠楠, Cheelo D, 龚双军, 文淑婷, 侯晓. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与促玉米生长作用研究. 中国农业科学, 2019, 52(9):1574-1586.
    [36] Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani JI, Santos PEDL, Reis VM, Caballero-Mellado J. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(8):1931-1937.
    [37] Reis VM, Santos PEDL, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6):2155-2162.
    [38] Elliott GN, Chen WM, Bontemps C, Chou JH, Young JPW, Sprent JI, James EK. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Annals of Botany, 2007, 100(7):1403-1411.
    [39] Vandamme P, Goris J, Chen WM, De Vos P, Willems A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Systematic and Applied Microbiology, 2002, 25(4):507-512.
    [40] Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature, 2001, 411(6840):948-950.
    [41] Onofre-Lemus J, HernáNdez-Lucas I, Girard L, Caballero-Mellado J. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Applied and Environmental Microbiology, 2009, 75(20):6581-6590.
    [42] Gillis M, Van Van T, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. International Journal of Systematic and Evolutionary Microbiology, 1995, 45(2):274-289.
    [43] Van VT, Berger O, Kê SN, Balandreau J, Heulin T. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant and Soil, 2000, 218(1):273-284.
    [44] Mannaa M, Park I, Seo YS. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. International Journal of Molecular Sciences, 2018, 20(1):121.
    [45] Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Donose BC, Webb RI, Parsons J, Liao W, Sagulenko E, Lakshmanan P, Hugenholtz P, Schmidt S, Ragan MA. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Scientific Reports, 2016, 6(1):37389.
    [46] Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions. Science, 2008, 320(5878):889-892.
    [47] Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Canadian Journal of Microbiology, 2002, 48(4):285-294.
    [48] Chen WM, James EK, Chou JH, Sheu SY, Yang SZ, Sprent JI. β-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytologist, 2005, 168(3):661-675.
    [49] Ramírez MDA, España M, Aguirre C, Kojima K, Ohkama-Ohtsu N, Sekimoto H, Yokoyama T. Burkholderia and Paraburkholderia are predominant soybean rhizobial genera in venezuelan soils in different climatic and topographical regions. Microbes and Environments, 2019, 34(1):43-58.
    [50] Vance CP, Uhde-Stone C, Ailan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3):423-447.
    [51] Zhang ZL, Liao H, Lucas WJ. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology, 2014, 56(3):192-220.
    [52] Tripura C, Sashidhar B, Podile AR. Ethyl methanesulfonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Current Microbiology, 2007, 54(2):79-84.
    [53] Weisskopf L, Heller S, Eberl L. Burkholderia species are major inhabitants of white lupin cluster roots. Applied and Environmental Microbiology, 2011, 77(21):7715-7720.
    [54] Linu MS, Stephen J, Jisha MS. Phosphate solubilizing Gluconacetobacter sp., Burkholderia sp. and their potential interaction with cowpea (Vigna unguiculata (L.) Walp.). International Journal of Agricultural Research, 2009, 4(2):79-87.
    [55] Zhao K, Penttinen P, Zhang XP, Ao XL, Liu MK, Yu XM, Chen Q. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 2014, 169(1):76-82.
    [56] Nascimento FX, Rossi MJ, Glick BR. Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Front in Plant Science, 2018, 9:114.
    [57] Glick BR. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 1995, 41(2):109-117.
    [58] Glick BR, Cheng ZY, Czarny J, Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 2007, 119(3):239-339.
    [59] Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(3):1187-1192.
    [60] Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Molecular Plant-Microbe Interactions, 2013, 26(5):546-553.
    [61] Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JMR. Diversity of cultivated endophytic bacteria from sugarcane:genetic and biochemical characterization of Burkholderia cepacia complex isolates. Applied and Environmental Microbiology, 2007, 73(22):7259-7267.
    [62] Li X, Quan CS, Fan SD. Antifungal activity of a novel compound from Burkholderia cepacia against plant pathogenic fungi. Letters in Applied Microbiology, 2007, 45(5):508-514.
    [63] Li X, Quan CS, Yu HY, Wang JH, Fan SD. Assessment of antifungal effects of a novel compound from Burkholderia cepacia against Fusarium solani by fluorescent staining. World Journal of Microbiology and Biotechnology, 2009, 25(1):151-154.
    [64] Sandani HBP, Ranathunge NP, Lakshman PLN, Weerakoon WMW. Biocontrol potential of five Burkholderia and Pseudomonas strains against Colletotrichum truncatum infecting chilli pepper. Biocontrol Science and Technology, 2019, 29(8):727-745.
    [65] Shi JF, Sun CQ, Zhang JT. Effects of preharvest spraying of Burkholderia contaminans on postharvest decay and quality of strawberry. Journal of Plant Protection, 2018, 45(2):382-388. (in Chinese) 施俊凤, 孙常青, 张婧婷. 采前喷施洋葱伯克霍尔德菌Burkholderia contaminans对草莓采后腐烂和品质的影响. 植物保护学报, 2018, 45(2):382-388.
    [66] Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW. Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environmental Science & Technology, 1999, 33(16):2771-2781.
    [67] Coenye T, Henry D, Speert DP, Vandamme P. Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Systematic and Applied Microbiology, 2004, 27(6):623-627.
    [68] Lu P, Zheng LQ, Sun JJ, Liu HM, Li SP, Hong Q, Li WJ. Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(6):1337-1341.
    [69] Song DW, Chen GQ, Liu SH, Khaskheli MA, Wu LJ. Complete genome sequence of Burkholderia sp. JP2-270, a rhizosphere isolate of rice with antifungal activity against Rhizoctonia solani. Microbial Pathogenesis, 2019, 127:1-6.
    [70] You M, Fang SM, Macdonald J, Xu JP, Yuan ZC. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiological Research, 2020, 233:126395.
    [71] Zhang XJ, Huang YJ, Harvey PR, Ren Y, Zhang GZ, Zhou HZ, Yang HT. Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene chi113. Biotechnology Letters, 2012, 34(2):287-293.
    [72] Angus AA, Lee A, Lum MR, Shehayeb M, Hessabi R, Fujishige NA, Yerrapragada S, Kano S, Song NN, Yang P, De Los Santos PE, De Faria SM, Dakora FD, Weinstock G, Hirsch AM. Nodulation and effective nitrogen fixation of Macroptilium atropurpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting beta-proteobacterium, are influenced by environmental factors. Plant and Soil, 2013, 369(1/2):543-562.
    [73] Panhwar QA, Naher UA, Jusop S, Othman R, Latif MA, Ismail MR. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS ONE, 2014, 9(10):e97241.
    [74] Khan MMA, Haque E, Paul NC, Khaleque MA, Al-Garni SMS, Rahman M, Islam MT. Enhancement of growth and grain yield of rice in nutrient deficient soils by rice probiotic bacteria. Rice Science, 2017, 24(5):264-273.
    [75] Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C. Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant and Soil, 2006, 280(1/2):239-252.
    [76] Malviya MK, Solanki MK, Li CN, Htun R, Singh RK, Singh P, Yang LT, Li YR. Beneficial linkages of endophytic Burkholderia anthina MYSP113 towards sugarcane growth promotion. Sugar Tech, 2019, 21(5):737-748.
    [77] Bernabeu PR, Pistorio M, Torres-Tejerizo G, Santos PEFL, Galar ML, Boiardi JL, Luna MF. Colonization and plant growth-promotion of tomato by Burkholderia tropica. Scientia Horticulturae, 2015, 191:113-120.
    [78] Min LJ, Guo L, Ye JR. Mechanism of Burkholderia pyrrocinia JK-SH007 growth-promoting to plant via siderophore-mediation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(6):165-172. (in Chinese) 闵莉静, 郭璐, 叶建仁. 基于嗜铁素介导的吡咯伯克霍尔德氏菌JK-SH007促生作用机制研究. 南京林业大学学报(自然科学版), 2019, 43(6):165-172.
    [79] Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294(5543):843-845.
    [80] Glick BR. Plant growth-promoting bacteria:mechanisms and applications. Scientifica, 2012, 2012:963401.
    [81] Sarkar A, Islam T, Biswas GC, Alam S, Hossain M, Talukder NM. Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. Acta Microbiologica et Immunologica Hungarica, 2012, 59(2):199-213.
    [82] Islam S, Akanda AM, Prova A, Islam MT, Hossain MM. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 2015, 6:1360.
    [83] Hillel D. Encyclopedia of soils in the environment. Amsterdam:Elsevier/Academic Press, 2005.
    [84] Castrillo G, Teixeira PJPL, Paredes SH, Law TF, De Lorenzo L, Feltcher ME, Finkel OM, Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J, Dangl JL. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646):513-518.
    [85] Lv QD, Zhong YJ, Wang YG, Wang ZY, Zhang L, Shi J, Wu ZC, Liu Y, Mao CZ, Yi KK, Wu P. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. The Plant Cell, 2014, 26(4):1586-1597.
    [86] Zhong YJ, Wang YG, Guo JF, Zhu XL, Shi J, He QJ, Liu Y, Wu YR, Zhang L, Lv QD, Mao CZ. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytologist, 2018, 219(1):135-148.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Kefei Zhang, Yongjia Zhong, Lili Sun, Hong Liao. Plant–associated beneficial Burkholderia. [J]. Acta Microbiologica Sinica, 2021, 61(8): 2205-2218

Copy
Share
Article Metrics
  • Abstract:685
  • PDF: 2146
  • HTML: 1814
  • Cited by: 0
History
  • Received:August 30,2020
  • Revised:October 19,2020
  • Online: August 04,2021
Article QR Code