Rhizosphere microbial community structure and driving mechanism of Zostera marina and Zostera japonica in Swan Lake, Weihai
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [51]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Objective] This research aims to investigate the diversity of microbial community structure in different seagrass growth periods, and to analyze the internal factors that lead to the differences in microbial community structure.[Methods] The rhizosphere sediments of seagrass and unvegetated areas surface sediments were collected. High throughput sequencing (Illumina MiSeq Platform) was used to analyze the microbial community characteristics of rhizosphere and unvegetated areas at different seagrass growth stages.[Results] The difference in microbial community structure was driven by the growth period of seagrass and whether seagrass was colonized. At the maturation stage of seagrass, Propionium was significantly enriched in the roots of Z. marina and Z. japonica, with a relative abundance of 11.58% and 14.26%, respectively. In the seedling stage of seagrass, Desulfobulbaceae was enriched at the seagrass roots (Z. marina:2.299%, Z. japonica:4.092%). The relative abundance of Sulfurovum was higher in the rhizosphere during the decline stage of seagrass (Z. marina:5.624%, Z. japonica:3.749%). In addition, the growth period of seagrass had the greatest explanatory power for the differences in microbial community structure (R2=0.20335, P=0.002). The results of PICRUSt2 function prediction showed that all functional genes showed the same trend in different growth stages of seagrass, but the abundance showed the result of seedling stage > mature stage > decline stage.[Conclusion] The microbial community structure of seagrass bed sediments in Swan Lake presented different diversity characteristics at different growth stages of seagrass, with obvious rhizosphere effect and no significant difference in the rhizosphere microbial community of different species of seagrass, which was not species-specific.

    Reference
    [1] Wang SM, Cui YN, Liu JX, Xia ZR. Research progress on seagrass and seagrass ecosystems. Acta Prataculturae Sinica, 2016, 25(11):149-159. (in Chinese) 王锁民, 崔彦农, 刘金祥, 夏曾润. 海草及海草场生态系统研究进展. 草业学报, 2016, 25(11):149-159.
    [2] Olsen JL, Rouzé P, Verhelst B, Lin YC, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, Töpel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Boström C, Chovatia M, Grimwood J, Jenkins WJ, Jueterbock A, Mraz A, Stam TW, Tice H, Bornberg-Bauer E, Green PJ, Pearson GA, Procaccini G, Duarte CM, Schmutz J, Reusch TBH, Van De Peer Y. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530(7590):331-335.
    [3] Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 2012, 5(7):505-509.
    [4] Ugarelli K, Chakrabarti S, Laas P, Stingl U. The seagrass holobiont and its microbiome. Microorganisms, 2017, 5(4):81.
    [5] van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJP, van Gils JA. A three-stage symbiosis forms the foundation of seagrass ecosystems. Science, 2012, 336(6087):1432-1434.
    [6] Zhou WG, Ding DW, Ling J, Lin XC, Yang QS, Zhang Y, Ahmad M, Zhang YY, Dong JD. Seagrass-microbial interactions in the rhizosphere. Acta Microbiologica Sinica, 2019, 59(11):2117-2129. (in Chinese) 周卫国, 丁德文, 凌娟, 林显程, 杨清松, 张颖, Manzoor Ahmad, 张燕英, 董俊德. 海草根际微生物与海草植株的互作效应. 微生物学报, 2019, 59(11):2117-2129.
    [7] Hamisi M, Díez B, Lyimo T, Ininbergs K, Bergman B. Epiphytic cyanobacteria of the seagrass Cymodocea rotundata:diversity, diel nifH expression and nitrogenase activity. Environmental Microbiology Reports, 2013, 5(3):367-376.
    [8] Trevathan-Tackett, S. M. et al. A horizon scan of priorities for coastal marine microbiome research. Nature Ecology Evolution, 2019, 3:1509-1520.
    [9] Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont:understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiology Letters, 2019, 366(6):1-15.
    [10] Sun YY, Song ZL, Zhang HK, Liu PY, Hu XK. Seagrass vegetation affect the vertical organization of microbial communities in sediment. Marine Environmental Research, 2020, 162:105174.
    [11] Apostolaki ET, Holmer M, Santinelli V, Karakassis I. Species-specific response to sulfide intrusion in native and exotic Mediterranean seagrasses under stress. Marine Environmental Research, 2018, 134:85-95.
    [12] Ugarelli K, Laas P, Stingl U. The microbial communities of leaves and roots associated with turtle grass (Thalassia testudinum) and manatee grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites. Microorganisms, 2019, 7(1).
    [13] Tarquinio F, Bourgoure J, Koenders A, Laverock B, Säwström C, Hyndes GA. Microorganisms facilitate uptake of dissolved organic nitrogen by seagrass leaves. ISME Journal, 2018, 12(11):2796-2800.
    [14] Martin BC, Bougoure J, Ryan MH, Bennett WW, Colmer TD, Joyce NK, Olsen YS, Kendrick GA. Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. The ISME Journal, 2019, 13(3):707-719.
    [15] Brodersen KE, Siboni N, Nielsen DA, Pernice M, Ralph PJ, Seymour J, Kühl M. Seagrass rhizosphere microenvironment alters plant-associated microbial community composition. Environmental Microbiology, 2018, 20(8):2854-2864.
    [16] NSR A, Ferriol P, Cryer C, Alcon E, Busquets A, Sintes E, Vidal C, Moyà G. Significant nitrogen fixation activity associated with the phyllosphere of Mediterranean seagrass Posidonia oceanica:first report. Marine Ecology Progress Series, 2016, 551:53-62.
    [17] Crump BC, Wojahn JM, Tomas F, Mueller RS. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Frontiers in Microbiology, 2018, 9(3):1-14.
    [18] Fahimipour AK, Kardish MR, Lang JM, Green JL, Eisen JA, Stachowicz JJ. Globalscale structure of the eelgrass microbiome. Applied and Environmental Microbiology, 2017, 83:1-12.
    [19] Garcias-Bonet N, Arrieta JM, Duarte CM, Marbà N. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquatic Botany, 2016, 131:57-60.
    [20] Lachnit T, Meske D, Wahl M, Harder T, Schmitz R. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environmental Microbiology, 2011, 13:655-665.
    [21] Marzinelli EM, Campbell AH, Valdes EZ, Vergés A, Nielsen S, Wernberg T, Bettibnies TD, Bennett S, Caporaso JG, Thomas T, Steinberg PD. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography. Environmental Microbiology, 2015, 17:4078-4088.
    [22] Cúcio C, Engelen AH, Costa R, Muyzer G. Rhizosphere microbiomes of European seagrasses are selected by the plant, but are not species specific. Frontiers in Microbiology, 2016, 7:440.
    [23] Johnson AJ, Orth RJ, Moore KA. The role of sexual reproduction in the maintenance of established Zostera marina meadows. Journal of Ecology, 2020, 108(3):945-957.
    [24] Furman BT, Jackson LJ, Bricker E, Peterson BJ. Sexual recruitment in Zostera marina:a patch to landscape-scale investigation. Limnology and Oceanography, 2015, 60(2):584-599.
    [25] Zhang X, Zhou Y, Xu S, Wang P, Zhao P, Yue S, Gu R, Song X, Xu S, Liu JX, Wang X. Differences in reproductive effort and sexual recruitment of the seagrass Zostera japonica between two geographic populations in northern China. Marine Ecology Progress Series, 2020, 638:65-81.
    [26] Jiang K, Tsang PKE, Xu NN, Chen XY. High genetic diversity and strong differentiation in dramatically fluctuating populations of Zostera japonica (Zosteraceae):implication for conservation. Journal of Plant Ecology, 2018, 11(5):789-797.
    [27] Hu CY, Dong JY, Gao LJ, Yang XL, Wang Z, Zhang XM. Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon. Environmental Pollution:Barking, Essex, 2019, 253:1107-1116.
    [28] Zhang XM, Zhou Y, Liu P, Wang F, Liu BJ, Liu XJ, Yang HS. Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China):implications for restoration and management. Marine Pollution Bulletin, 2015, 94(1/2):103-113.
    [29] Wang PM, Zhou Y, Zhang XM, Wang F, Gu RT, Xu SC, Song XY. Supplementary investigation of eelgrass seedlings (Zostera marina L.)/in Swan lake. Marine Sciences, 2016, 40(6):49-55. (in Chinese) 王朋梅, 周毅, 张晓梅, 王峰, 顾瑞婷, 徐少春, 宋肖跃. 天鹅湖大叶藻种苗补充情况调查. 海洋科学, 2016, 40(6):49-55.
    [30] Turner TR, James EK, Poole PS. The plant microbiome. Genome Biology, 2013, 14(6):1-10.
    [31] Matse DT, Huang CH, Huang YM, Yen MY. Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. Journal of Plant Nutrition, 2020, 43(5):739-752.
    [32] Yamamoto K, Shiwa Y, Ishige T, Sakamoto H, Tanaka K, Uchino M, Tanaka N, Oguri S, Saitoh H, Tsushima S. Bacterial diversity associated with the rhizosphere and endosphere of two halophytes:Glaux maritima and Salicornia europaea. Frontiers in Microbiology, 2018, 9:2878.
    [33] Hasler-Sheetal H, Holmer M. Sulfide intrusion and detoxification in the seagrass Zostera marina. PLoS ONE, 2015, 10(6):1-19.
    [34] Scholz VV, Müller H, Koren K, Nielsen LP, Meckenstock RU. The rhizosphere of aquatic plants is a habitat for cable bacteria. FEMS Microbiology Ecology, 2019, 95(6):fiz062.
    [35] Sanchez-Amat A, Solano F, Lucas-Elío P. Finding new enzymes from bacterial physiology:a successful approach illustrated by the detection of novel oxidases in Marinomonas mediterranea. Marine Drugs, 2010, 8(3):519-541.
    [36] Houbo W. Culture-dependent diversity of Actinobacteria associated with seagrass (Thalassia hemprichii). African Journal of Microbiology Research, 2012, 6(1):87-94.
    [37] Schink B, Pfennig N. Propionigenium modestum gen. nov. sp. nov. a new strictly anaerobic, nonsporing bacterium growing on succinate. Archives of Microbiology, 1982, 133:209-216.
    [38] Janssen PH, Liesack W. Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Archives of Microbiology, 1995, 164(1):29-35.
    [39] Ma Y, Hu AY, Yu CP, Yan QP, Yan XZ, Wang YZ, Deng F, Xiong HJ. Response of microbial communities to bioturbation by artificially introducing macrobenthos to mudflat sediments for in situ bioremediation in a typical semi-enclosed bay, southeast China. Marine Pollution Bulletin, 2015, 94(1/2):114-122.
    [40] Zheng B, Wang L, Liu L. Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiological Research, 2014, 169(7/8):585-592.
    [41] He H, Li MY, Zhen Y, Mi TZ, Yu ZG. Bacterial and archaeal communities in sediments from the adjacent waters of Rushan bay (China) revealed by illumina sequencing. Geomicrobiology Journal, 2020, 37(1):86-100.
    [42] Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The Prokaryotes-delta and epsilon subclasses. 2006.
    [43] Hasler-Sheetal H, Fragner L, Holmer M, Weckwerth W. Diurnal effects of Anoxia on the metabolome of the seagrass Zostera marina. Metabolomics, 2015, 11(5):1208-1218.
    [44] Wan YY, Zhao GP. Research on sulfur microorganisms in prokaryotes. Microbiology, 2017, 44(6):1471-1480. (in Chinese) 万云洋, 赵国屏. 原核微生物的硫功能菌. 微生物学通报, 2017, 44(6):1471-1480.
    [45] Cúcio C, Overmars L, Engelen AH, Muyzer G. Metagenomic analysis shows the presence of bacteria related to free-living forms of sulfur-oxidizing chemolithoautotrophic symbionts in the rhizosphere of the seagrass Zostera marina. Frontiers in Marine Science, 2018, 5(5):1-15.
    [46] Ling J, Dong JD, Zhang YY, Wang YS, Long LJ, Chen L, Huang XF, Pan H, Zhang S. Research on the status and prospects of N2-fixation microorganisms in seagrass beds ecosystem. Journal of Biology, 2012, 29(3):62-65. (in Chinese) 凌娟, 董俊德, 张燕英, 王友绍, 龙丽娟, 陈蕾, 黄小芳, 潘虎, 张偲. 海草床生态系统固氮微生物研究现状与展望. 生物学杂志, 2012, 29(3):62-65.
    [47] Zheng PF, Zhang XL, Gong J. Vertical patterns of bacterial and archaeal abundance and community structure in seagrass (Zostera marina) meadow sediments. Microbiology, 2020, 47(6):1662-1674. (in Chinese) 郑鹏飞, 张晓黎, 龚骏. 大叶藻(Zostera marina)海草床沉积物细菌和古菌丰度及组成的垂直剖面特征. 微生物学通报, 2020, 47(6):1662-1674.
    [48] Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 2013, 1(1):22.
    [49] Zhang H, Yoshizawa S, Sun Y, Huang YJ, Chu X, González JM, Pinhassi J, Luo HW. Repeated evolutionary transitions of flavobacteria from marine to non-marine habitats. Environmental Microbiology, 2019, 21(2):648-666.
    [50] Xue CX, Zhang H, Lin HY, Sun Y, Luo DL, Huang YJ, Zhang XH, Luo HW. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. Environmental Microbiology, 2020, 22(8):3234-3247.
    [51] Pengyuan L, Haikun Z, Lin C, Yanyu S, Caixia W, Hong S, Xiaoke H. Rhizosphere microbial community structure and function of Zostera japonica in the distribution area of seagrass beds in the Yellow Sea and Bohai Sea. Acta Microbiologica Sinica, 2019, 59(8):1484-1499. (in Chinese) 刘鹏远, 张海坤, 陈琳, 孙延瑜, 王彩霞, 宋虹, 胡晓珂. 黄渤海海草分布区日本鳗草根际微生物群落结构特征及其功能分析. 微生物学报, 2019, 59(8):1484-1499.
    Cited by
Get Citation

Yanyu Sun, Zenglei Song, Pengyuan Liu, Haikun Zhang, Xiaoke Hu. Rhizosphere microbial community structure and driving mechanism of Zostera marina and Zostera japonica in Swan Lake, Weihai. [J]. Acta Microbiologica Sinica, 2021, 61(9): 2675-2692

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 27,2020
  • Revised:January 07,2021
  • Online: September 04,2021
Article QR Code