Adaptation mechanism of Brevibacterium species to the marine environment based on pan-genomics analysis
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] Our main goal was to clarify the adaptation mechanism of Brevibacterium species to the marine environment.[Methods] In this paper, six Brevibacterium strains isolated from different sea regions and belonging to different operational taxonomic units were sequenced, assembled and annotated. Combined with the genomic data of 23 typical and atypical Brevibacterium strains downloaded from NCBI, pan genomics analysis and species evolution analysis were carried out.[Results] Pan genomics analysis showed that the Brevibacterium strains had an open pan genome, which was consistent with the diversity of its living environment. There are obvious differences between marine Brevibacterium strains and other habitat Brevibacterium strains at the genomic level, mainly in the aspects of gene family expansion and contraction, transporter family, metabolic pathway and CRISPR.[Conclusion] These differences at the genomic level preliminarily revealed the adaptability of marine Brevibacterium strains to marine environment, which laid the foundation for a deep-going understanding of the environmental adaptation mechanism of Brevibacterium strains.

    Reference
    [1] Breed RS. The families developed from Bacteriaceae Cohn with a description of the family Brevibacteriaceae. 1953.
    [2] Komagata K, Iizuka H. New species of Brevibacterium isolated from rice. Journal of the Agricultural Chemical Society of Japan, 1964, 38(10):496-502.
    [3] Collins MD, Farrow JAE, Goodfellow M, Minnikin DE. Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov.. Systematic and Applied Microbiology, 1983, 4(3):388-395.
    [4] Roux V, Raoult D. Brevibacterium massiliense sp. nov., isolated from a human ankle discharge. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(8):1960-1964.
    [5] Heyrman J, Verbeeren J, Schumann P, Devos J, Swings J, de Vos P. Brevibacterium picturae sp. nov., isolated from a damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria). International Journal of Systematic and Evolutionary Microbiology, 2004, 54(5):1537-1541.
    [6] Choi EJ, Lee SH, Jung JY, Jeon CO. Brevibacterium jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_9):3430-3436.
    [7] Ivanova EP, Christen R, Alexeeva YV, Zhukova NV, Gorshkova NM, Lysenko AM, Mikhailov VV, Nicolau DV. Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6):2107-2111.
    [8] Chen P, Zhang LM, Wang J, Ruan JS, Han XQ, Huang Y. Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(12):5268-5274.
    [9] Bhadra B, Raghukumar C, Pindi PK, Shivaji S. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1):57-60.
    [10] Ozturkoglu-Budak S, Wiebenga A, Bron PA, de Vries RP. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. International Journal of Food Microbiology, 2016, 237:17-27.
    [11] Rattray FP, Fox PF. Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening:a review. Journal of Dairy Science, 1999, 82(5):891-909.
    [12] Amarita F, Yvon M, Nardi M, Chambellon E, Delettre J, Bonnarme P. Identification and functional analysis of the gene encoding methionine-gamma-lyase in Brevibacterium linens. Applied and Environmental Microbiology, 2004, 70(12):7348-7354.
    [13] Bonnarme P, Psoni L, Spinnler HE. Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Applied and Environmental Microbiology, 2000, 66(12):5514-5517.
    [14] Yvon M, Chambellon E, Bolotin A, Roudot-Algaron F. Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Applied and Environmental Microbiology, 2000, 66(2):571-577.
    [15] Anast JM, Dzieciol M, Schultz DL, Wagner M, Mann E, Schmitz-Esser S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Scientific Reports, 2019, 9:6164.
    [16] Díez-Méndez A, García-Fraile P, Solano F, Rivas R. The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for bleaching dye. Scientific Reports, 2019, 9:15217.
    [17] Chatterjee P, Samaddar S, Niinemets Ü, Sa TM. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiological Research, 2018, 215:89-101.
    [18] Simoes F, Vale P, Stephenson T, Soares A. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors. Environmental Technology, 2018, 39(17):2278-2287.
    [19] Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou LW, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:implications for the microbial "pan-genome". Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39):13950-13955.
    [20] Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 2013, 10(6):563-569.
    [21] Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Research, 2018, 46(W1):W246-W251.
    [22] Zhao YB, Wu JY, Yang JH, Sun SX, Xiao JF, Yu J. PGAP:pan-genomes analysis pipeline. Bioinformatics:Oxford, England, 2012, 28(3):416-418.
    [23] Zhao YB, Jia XM, Yang JH, Ling YC, Zhang Z, Yu J, Wu JY, Xiao JF. PanGP:a tool for quickly analyzing bacterial pan-genome profile. Bioinformatics, 2014, 30(9):1297-1299.
    [24] Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Molecular Biology and Evolution, 2013, 30(4):772-780.
    [25] Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015, 32(1):268-274.
    [26] Sanderson MJ. r8s:inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics:Oxford, England, 2003, 19(2):301-302.
    [27] Tian XP, Zhang ZW, Yang TT, Chen ML, Li J, Chen F, Yang J, Li WJ, Zhang B, Zhang Z, Wu JY, Zhang CS, Long LJ, Xiao JF. Comparative genomics analysis of Streptomyces species reveals their adaptation to the marine environment and their diversity at the genomic level. Frontiers in Microbiology, 2016, 7:998.
    [28] Emms DM, Kelly S. OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biology, 2019, 20(1):238.
    [29] De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE:a computational tool for the study of gene family evolution. Bioinformatics:Oxford, England, 2006, 22(10):1269-1271.
    [30] 李纯, 孙春玉, 陈静, 林彦萍, 王义, 张美萍. 主要协同转运蛋白超家族的研究进展. 生物技术通报, 2018, 34(8):43-49.Li C, Sun CY, Chen J, Lin YP, Wang Y, Zhang MP. Research advances in the major facilitator superfamily. Biotechnology Bulletin, 2018, 34(8):43-49. (in Chinese)
    [31] Schatz PJ, Riggs PD, Jacq A, Fath MJ, Beckwith J. The secE gene encodes an integral membrane protein required for protein export in Escherichia coli. Genes & Development, 1989, 3(7):1035-1044.
    [32] Lycklama a Nijeholt JA, de Keyzer J, Prabudiansyah I, Driessen AJM. Characterization of the supporting role of SecE in protein translocation. FEBS Letters, 2013, 587(18):3083-3088.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

PEI Shengxiang, HUANG Xiaoyun, NIU Siwen, XIE Fuquan, ZHANG Gaiyun. Adaptation mechanism of Brevibacterium species to the marine environment based on pan-genomics analysis. [J]. Acta Microbiologica Sinica, 2022, 62(1): 145-159

Copy
Share
Article Metrics
  • Abstract:505
  • PDF: 1549
  • HTML: 1358
  • Cited by: 0
History
  • Received:March 12,2021
  • Revised:June 28,2021
  • Online: January 06,2022
Article QR Code