Anti-allergic effects of Lactobacillus acidophilus La28 and L. plantoplantum LP45 in mice
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] To compare the allergic effects of Lactobacillus acidophilus La28 and L. plantoplantum LP45 against allergic dermatitis and allergic asthma in mice, and to analyze the strain-specific differences in related immune regulatory effects.[Methods] In order to study atopic dermatitis, we randomly assigned 40 mice into control group, model group, La28 group, and LP45 group. Except those in the control group, the mice in other three groups were treated with 2,4-dinitrofluorobenzene to induce ear swelling and dermatitis. The mice in La28 group and LP45 group received 5×108 CFU/mL corresponding bacteria by intragastric administration every day for three weeks. We then measured the ear swelling rate and skin lesion score in each group, observed the pathological changes of skin, and determined the levels of interleukin-4 (IL-4) and interleukin-13 (IL-13) in the skin. To study allergic asthma, we treated mice in the other three groups except the control group with ovalbumin and aluminum hydroxide adjuvant to induce asthma. The mice in La28 group and LP45 group were fed with 5×108 CFU/mL corresponding bacteria every day for four weeks. We then evaluated the asthma symptoms of mice in each group, examined the pathological changes in the lung tissue, and determined the levels of IL-4, IL-13, and interleukin-17 (IL-17) in the lung tissue.[Results] La28 and LP45 significantly relieved ear swelling and skin damage, significantly reduced IL-4 secretion, and slightly lowered the IL-13 level in the mice with allergic dermatitis. La28 and LP45 alleviated asthma symptoms. LP45 mitigated the pathological injury of the lung tissue, reduced inflammatory cell infiltration, and significantly down-regulated the levels of IL-4, IL-13, and IL-17 in the lung tissue. La28 significantly reduced the IL-13 secretion while insignificantly lowered the levels of IL-4 and IL-17.[Conclusion] The two Lactobacillus strains, especially LP45, can regulate the immune function and repair the damaged tissues to relieve atopic dermatitis and asthma in mice.

    Reference
    [1] Dierick BJH, Van Der Molen T, Flokstra-De Blok BMJ, Muraro A, Postma MJ, Kocks JWH, Van Boven JFM. Burden and socioeconomics of asthma, allergic rhinitis, atopic dermatitis and food allergy. Expert Review of Pharmacoeconomics & Outcomes Research, 2020, 20(5):437-453.
    [2] Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. The Lancet, 2020, 396(10247):345-360.
    [3] Lloyd-Lavery A, Solman L, Grindlay DJC, Rogers NK, Thomas KS, Harman KE. What's new in atopic eczema? An analysis of systematic reviews published in 2016. Part 2:epidemiology, aetiology and risk factors. Clinical and Experimental Dermatology, 2019, 44(4):370-375.
    [4] Lundbäck B, Backman H, Lötvall J, Rönmark E. Is asthma prevalence still increasing? Expert Review of Respiratory Medicine, 2016, 10(1):39-51.
    [5] Edvinsson Sollander S, Fabian H, Sarkadi A, Salari R, Fält E, Dahlberg A, Feldman I, Durbeej N. Asthma and allergies correlate with mental health problems in preschool children. Acta Paediatrica, 2021, 110(5):1601-1609.
    [6] Drucker AM, Wang AR, Li WQ, Sevetson E, Block JK, Qureshi AA. The burden of atopic dermatitis:summary of a report for the national eczema association. Journal of Investigative Dermatology, 2017, 137(1):26-30.
    [7] Gandhi NA, Bennett BL, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nature Reviews Drug Discovery, 2016, 15(1):35-50.
    [8] Kuruvilla ME, Lee FEH, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clinical Reviews in Allergy & Immunology, 2019, 56(2):219-233.
    [9] 王希, 姜晓峰. 过敏性哮喘中Th2免疫反应的作用和相关机制. 医学综述, 2020, 26(16):3178-3183. Wang X, Jiang XF. Role and mechanisms of Th2 immune response in allergic asthma. Medical Recapitulate, 2020, 26(16):3178-3183. (in Chinese)
    [10] Dennis-Wall JC, Culpepper T, Nieves C, Rowe CC, Burns AM, Rusch CT, Federico A, Ukhanova M, Waugh S, Mai V, Christman MC, Langkamp-Henken B. Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies:a double-blind, placebo-controlled, randomized trial. The American Journal of Clinical Nutrition, 2017, 105(3):758-767.
    [11] Durack J, Kimes NE, Lin DL, Rauch M, McKean M, McCauley K, Panzer AR, Mar JS, Cabana MD, Lynch SV. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nature Communications, 2018, 9:707.
    [12] Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical & Experimental Allergy, 2014, 44(6):842-850.
    [13] 伍梓汐, 李姗珊, 沈曦, 李鸣, 崔文静, 张其圣, 何方. 益生菌免疫调节功能研究. 食品科技, 2017, 42(1):29-33. Wu ZX, Li SS, Shen X, Li M, Cui WJ, Zhang QS, He F. Effects on immunomodulatory of probiotics. Food Science and Technology, 2017, 42(1):29-33. (in Chinese)
    [14] Kang MY, Han SW, Kang HR, Hong SJ, Kim DH, Choi JH. Probiotic NVP-1703 alleviates allergic rhinitis by inducing IL-10 expression:a four-week clinical trial. Nutrients, 2020, 12(5):1427.
    [15] 李镇, 陈亮, 林敬明, 卓越, 江朝娜. 七叶亭调控Th1/Th2失衡对过敏性哮喘小鼠的抗哮喘作用. 中国药业, 2020, 29(11):29-33. Li Z, Chen L, Lin JM, Zhuo Y, Jiang CN. Anti-asthmatic effect of esculetin on allergic asthma model mice by regulating Th1/Th2 imbalance. China Pharmaceuticals, 2020, 29(11):29-33. (in Chinese)
    [16] Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma:modulation of Th2 cells and their responses. Respiratory Research, 2011, 12(1):114.
    [17] Wu TD, Brigham EP, McCormack MC. Asthma in the primary care setting. The Medical Clinics of North America, 2019, 103(3):435-452.
    [18] 张丽霞, 王倩, 陈金, 卢葳, 蔡震. 特应性皮炎小鼠模型建立方法的研究. 实用医院临床杂志, 2014, 11(2):16-18. Zhang LX, Wang Q, Chen J, Lu W, Cai Z. Establishment of a mice model with atopic dermatitis. Practical Journal of Clinical Medicine, 2014, 11(2):16-18. (in Chinese)
    [19] 李小磊. 共轭亚油酸在昆明小鼠特应性皮炎模型中的作用研究. 武汉大学学位论文, 2020.
    [20] 王欣欣, 李思佳, 关洪全, 侯殿东. DNCB对BALB/c小鼠特应性皮炎的诱导作用及其机制. 吉林大学学报:医学版, 2020, 46(3):439-443, 669. Wang XX, Li SJ, Guan HQ, Hou DD. Induction effect of DNCB on atopic dermatitis BALB/c mice and its mechanism. Journal of Jilin University:Medicine Edition, 2020, 46(3):439-443, 669. (in Chinese)
    [21] 崔芳, 史春丽, 尹梅, 高小平, 王立英, 何斌, 赵巍, 赵嘉庆. 枸杞多糖对过敏性哮喘小鼠肠道菌群的影响. 现代食品科技, 2019, 35(9):67-73. Cui F, Shi CL, Yin M, Gao XP, Wang LY, He B, Zhao W, Zhao JQ. Effect of Lycium barbarum polysaccharide on gut microbiota in allergic asthmatic mice. Modern Food Science and Technology, 2019, 35(9):67-73. (in Chinese)
    [22] 赵丹宁. 扁蒴藤素对过敏性哮喘小鼠气道炎症的保护作用及机制研究. 吉林大学学位论文, 2015.
    [23] 戴伟丹, 孙爱军, 张传森. 脂肪来源的间充质干细胞对过敏性哮喘的治疗作用. 解剖学杂志, 2019, 42(3):221-224, 248. Dai WD, Sun AJ, Zhang CS. Therapeutic effect of adipose-derived mesenchymal stem cells on allergic asthma. Chinese Journal of Anatomy, 2019, 42(3):221-224, 248. (in Chinese)
    [24] 吴舒懋, 赵钱雷, 王勇, 潘安直, 姜建亮. 橙皮苷对过敏性哮喘小鼠肺组织炎症及肺泡灌洗液中细胞因子水平影响. 临床和实验医学杂志, 2020, 19(2):125-128. Wu SM, Zhao QL, Wang Y, Pan AZ, Jiang JL. Effects of hesperidin on lung inflammation and cytokines in bronchoalveolar lavage fluid in mice with allergic asthma. Journal of Clinical and Experimental Medicine, 2020, 19(2):125-128. (in Chinese)
    [25] Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergologia et Immunopathologia, 2020, 48(6):771-788.
    [26] Lim SK, Kwon MS, Lee J, Oh YJ, Jang JY, Lee JH, Park HW, Nam YD, Seo MJ, Roh SW, Choi HJ. Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory T cells in BALB/c mice. Scientific Reports, 2017, 7:40040-40049.
    [27] Peebles RS Jr, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma. Clinics in Chest Medicine, 2019, 40(1):29-50.
    [28] 范爱红, 米艳茹, 代育中, 郭福燕, 刘刚. 过敏性哮喘患儿外周血Th17/Treg比值变化及免疫球蛋白、血IDO、白介素的相关性分析. 临床肺科杂志, 2021, 26(7):1041-1046. Fan AH, Mi YR, Dai YZ, Guo FY, Liu G. Change of Th17/Treg ratio in peripheral blood of children with allergic asthma and the correlation analysis between immunoglobulin, IL-17A and IL-10. Journal of Clinical Pulmonary Medicine, 2021, 26(7):1041-1046. (in Chinese)
    [29] 覃松梅, 刘彤, 龙胜泽, 蓝娇, 韦彩周, 农向阳, 冉果, 覃雪军. 成人哮喘患者Treg/Th17细胞失衡与呼出气一氧化氮的相关性研究. 中国免疫学杂志, 2022, 38(2):211-214, 222. Qin SM, Liu T, Long SZ, Lan J, Wei CZ, Nong XY, Ran G, Qin XJ. Correlation between Treg/Th17 imbalance and FeNO in adult patients with asthma. Chinese Journal of Immunology, 2022, 38(2):211-214, 222. (in Chinese)
    [30] Liu MY, Yang ZY, Dai WK, Huang JQ, Li YH, Zhang J, Qiu CZ, Wei C, Zhou Q, Sun X, Feng X, Li DF, Wang HP, Zheng YJ. Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and β-lactoglobulin-induced intestinal food allergy mouse models. World Journal of Gastroenterology, 2017, 23(12):2149-2158.
    [31] Wu CT, Chen PJ, Lee YT, Ko JL, Lue KH. Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. Journal of Microbiology, Immunology and Infection, 2016, 49(5):625-635.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YAN Mengjie, ZHU Leilei, GUO Runqing, CUI Shumao, LU Wenwei, YANG Ling, LU Jianghao, SUN Xinkai, ZHAO Linsen, HE Fang. Anti-allergic effects of Lactobacillus acidophilus La28 and L. plantoplantum LP45 in mice. [J]. Acta Microbiologica Sinica, 2022, 62(3): 797-805

Copy
Share
Article Metrics
  • Abstract:615
  • PDF: 1157
  • HTML: 1172
  • Cited by: 0
History
  • Received:August 14,2021
  • Revised:November 04,2021
  • Online: March 07,2022
Article QR Code