Inflammatory responses to viral infections: a double-edged sword in the antiviral defense of host
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [70]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Innate immune response serves as the first line and the most rapid system of host defense against the invasion of microbial pathogens. Pattern recognition receptors in the host innate immune system activate a number of proinflammatory cytokines and cause inflammatory response after recognizing the invasion signal. Viral infections may activate immune responses of host. The strong regulatory network of inflammatory response plays a key role in the antiviral process of host to maintain the homeostasis. This paper reviews the inflammatory response induced by viral infections, focusing on the host regulatory network of inflammatory response, and the mechanisms of DNA and RNA viruses in regulating inflammatory response, aiming to provide some references for the treatment of immune diseases caused by viral infections.

    Reference
    [1] Janeway CA, Jr. Approaching the asymptote?Evolution and revolution in immunology. Cold Spring Harbor Symposia on Quantitative Biology, 1989, 54:1-13.
    [2] Jaeger M, Stappers MH, Joosten LA, Gyssens IC, Netea MG. Genetic variation in pattern recognition receptors:functional consequences and susceptibility to infectious disease. Future Microbiology, 2015, 10(6):989-1008.
    [3] Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition:a cell biological perspective. Annual Review of Immunology, 2015, 33:257-290.
    [4] Yang Q, Shu HB. Deciphering the pathways to antiviral innate immunity and inflammation. Advances in Immunology, 2020, 145:1-36.
    [5] Remi H, Janet AW, Gordon DB. PAMPs of the fungal cell wall and mammalian PRRs. Current Topics in Microbiology and Immunology, 2020, 425:187-223.
    [6] Tao JL, Zhou X, Jiang ZF. cGAS-cGAMP-STING:the three musketeers of cytosolic DNA sensing and signaling. IUBMB Life, 2016, 68(11):858-870.
    [7] Gaurav M, Zhou Y. Innate immune sensing of influenza A virus. Viruses, 2020, 12(7):755.
    [8] Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, Baric RS. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio, 2015, 6(3):e00638-e00615.
    [9] Channappanavar R, Perlman S. Pathogenic human coronavirus infections:causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology, 2017, 39(5):529-539.
    [10] Lotfi M, Hamblin MR, Rezaei N. COVID-19:transmission, prevention, and potential therapeutic opportunities. Clinica Chimica Acta, 2020, 508:254-266.
    [11] Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion, 2018, 41:37-44.
    [12] DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunological Reviews, 2012, 246(1):379-400.
    [13] Baldwin AS. The NF-kappa B and I kappa B proteins:new discoveries and insights. Annual Review of Immunology, 1996, 14:649-683.
    [14] Zhu JJ, Yu BY, Fu CC, He MZ, Zhu JH, Chen BW, Zheng YH, Chen SQ, Fu XQ, Li PJ, Lin ZL. LXA4 protects against hypoxic-ischemic damage in neonatal rats by reducing the inflammatory response via the IκB/NF-κB pathway. International Immunopharmacology, 2020, 89(B):107095.
    [15] Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel transcription factors in pancreatic cancer:focusing on RelA, c-Rel, and RelB. Cancers, 2019, 11(7):937.
    [16] Jamal A, Husein A, Bihari C, Kumar V. Ubiquitin ligase TRUSS augments the expression of interleukin-10 via proteasomal processing of NF-κB1/p105 to NF-κB/p50. Cellular Signalling, 2020, 75:109766.
    [17] Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. The Biochemical Journal, 2004, 382(2):393-409.
    [18] Trelle MB, Ramsey KM, Lee TC, Zheng W, Lamboy J, Wolynes PG, Deniz A, Komives EA. Binding of NF-κB appears to twist the ankyrin repeat domain of IκBα. Biophysical Journal, 2016, 110(4):887-895.
    [19] Yatherajam G, Banerjee PP, McCorkell KA, Solt LA, Hanson EP, Madge LA, Kang S, Worley PF, Orange JS, May MJ. Cutting edge:association with I kappa B kinase beta regulates the subcellular localization of Homer3. Journal of Immunology, 2010, 185(5):2665-2669.
    [20] Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases:a mechanistic approach. Current Neuropharmacology, 2020, 18(10):918-935.
    [21] Wang LN, Feng WL, Yang X, Yang FF, Wang R, Ren Q, Zhu XF, Zheng GG. Fbxw11 promotes the proliferation of lymphocytic leukemia cells through the concomitant activation of NF-κB and β-catenin/TCF signaling pathways. Cell Death& Disease, 2018, 9(4):427.
    [22] Kenneth NS, Mudie S, Rocha S. IKK and NF-κB-mediated regulation of claspin impacts on ATR checkpoint function. The EMBO Journal, 2010, 29(17):2966-2978.
    [23] Zhao M, Li XD, Chen Z. CC2D1A, a DM14 and C2 domain protein, activates NF-κB through the canonical pathway. Journal of Biological Chemistry, 2010, 285(32):24372-24380.
    [24] Niida M, Tanaka M, Kamitani T. Downregulation of active IKK beta by Ro52-mediated autophagy. Molecular Immunology, 2010, 47(14):2378-2387.
    [25] Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK:integral components of immune system signaling. Advances in Experimental Medicine and Biology, 2019, 1172:207-226.
    [26] Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nature Immunology, 2011, 12(8):695-708.
    [27] Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Research, 2011, 21(2):223-244.
    [28] Riedlinger T, Haas J, Busch J, Van De Sluis B, Kracht M, Schmitz M L. The direct and indirect roles of NF-κB in cancer:lessons from oncogenic fusion proteins and knock-in mice. Biomedicines, 2018, 6(2):57.
    [29] Lopes Fischer N, Naseer N, Shin S, Brodsky IE. Effector-triggered immunity and pathogen sensing in metazoans. Nature Microbiology, 2020, 5(1):14-26.
    [30] Bellissimo DC, Chen CH, Zhu Q, Bagga S, Lee CT, He B, Wertheim GB, Jordan M, Tan K, Worthen GS, Gilliland DG, Speck NA. Runx1 negatively regulates inflammatory cytokine production by neutrophils in response to Toll-like receptor signaling. Blood Advances, 2020, 4(6):1145-1158.
    [31] Deng L, Zeng Q, Wang M, Cheng A, Jia R, Chen S, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. Suppression of NF-κB activity:a viral immune evasion mechanism. Viruses, 2018, 10(8):409.
    [32] Farabaugh KT, Krokowski D, Guan BJ, Gao Z, Gao XH, Wu J, Jobava R, Ray G, De Jesus TJ, Bianchi MG, Chukwurah E, Bussolati O, Kilberg M, Buchner DA, Sen GC, Cotton C, McDonald C, Longworth M, Ramakrishnan P, Hatzoglou M. PACT-mediated PKR activation acts as a hyperosmotic stress intensity sensor weakening osmoadaptation and enhancing inflammation. eLife, 2020, 9:e52241.
    [33] Gu LG, Ge ZM, Wang YM, Shen MQ, Zhao P, Chen WC. Double-stranded RNA-dependent kinase PKR activates NF-κB pathway in acute pancreatitis. Biochemical and Biophysical Research Communications, 2018, 503(3):1563-1569.
    [34] Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes:a complex web of host defenses. Annual Review of Immunology, 2014, 32:513-545.
    [35] Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT signaling as a target for inflammatory and autoimmune diseases:current and future prospects. Drugs, 2017, 77(5):521-546.
    [36] Owen KL, Brockwell NK, Parker BS. JAK-STAT signaling:a double-edged sword of immune regulation and cancer progression. Cancers, 2019, 11(12):2002.
    [37] Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M, Nampoothiri M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgraduate Medicine, 2021, 133(5):489-507.
    [38] Mazewski C, Perez RE, Fish EN, Platanias LC. Type I interferon (IFN)-regulated activation of canonical and non-canonical signaling pathways. Frontiers in Immunology, 2020, 11:606456.
    [39] Wang B, Thurmond S, Zhou K, Sánchez-Aparicio MT, Fang J, Lu J, Gao L, Ren W, Cui Y, Veit EC, Hong H, Evans MJ, O'Leary SE, García-Sastre A, Zhou ZH, Hai R, Song J. Structural basis for STAT2 suppression by flavivirus NS5. Nature Structural& Molecular Biology, 2020, 27(10):875-885.
    [40] Xie J, Wang M, Cheng A, Jia R, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Luo Q, Wang Y, Xu Z, Chen Z, Zhu L, Liu Y, Yu Y, Zhang L, Chen X. The role of SOCS proteins in the development of virus-induced hepatocellular carcinoma. Virology Journal, 2021, 18(1):74.
    [41] Yakass M B, Franco D, Quaye O. Yellow fever virus down-regulates mRNA expression of SOCS1 in the initial phase of infection in human cell lines. Viruses, 2020, 12(8):802.
    [42] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell, 2014, 157(5):1013-1022.
    [43] Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, Hauenstein AV, Wu ZL, Núñez G, Mao YD, Wu H. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019, 570(7761):338-343.
    [44] Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome:molecular activation and regulation to therapeutics. Nature Reviews Immunology, 2019, 19(8):477-489.
    [45] Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. Journal of Immunology, 2012, 189(8):4175-4181.
    [46] Juliana C, Fernandes-Alnemri T, Kang S, Fariaduced upregulation of miR-146a in HUVECs promotes viral infection by modulating pro-inflammatory cytokine release. Biochemical and Biophysical Research Communications, 2017, 493(1):807-813.
    [71] Wang KR, Ma HW, Liu H, Ye W, Li Z, Cheng LF, Zhang L, Lei YF, Shen LX, Zhang FL. The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses. Cell Reports, 2019, 27(7):2075-2091.e5.
    [72] Yu H, Jiang W, Du H, Xing Y, Bai G, Zhang Y, Li Y, Jiang H, Zhang Y, Wang J, Wang P, Bai X. Involvement of the Akt/NF-κB pathways in the HTNV-mediated increase of IL-6, CCL5, ICAM-1, and VCAM-1 in HUVECs. PLoS One, 2014, 9(4):e93810.
    [73] Chen QZ, Wang X, Luo F, Li N, Zhu N, Lu S, Zan YX, Zhong CJ, Wang MR, Hu HT, Zhang YZ, Xiong HR, Hou W. HTNV sensitizes host toward TRAIL-mediated apoptosis-a pivotal anti-hantaviral role of TRAIL. Frontiers in Immunology, 2020, 11:1072.
    [74] Yu HT, Jiang H, Zhang Y, Nan XP, Li Y, Wang W, Jiang W, Yang DQ, Su WJ, Wang JP, Wang PZ, Bai XF. Hantaan virus triggers TLR4-dependent innate immune responses. Viral Immunology, 2012, 25(5):387-393.
    [75] Musso D, Gubler DJ. Zika virus. Clinical Microbiology Reviews, 2016, 29(3):487-524.
    [76] Song BH, Yun SI, Woolley M, Lee YM. Zika virus:history, epidemiology, transmission, and clinical presentation. Journal of Neuroimmunology, 2017, 308:50-64.
    [77] Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma HL, O'Neal JT, Rajakumar A, Wrammert J, Rimawi BH, Pulendran B, Schinazi RF, Chakraborty R, Suthar MS. Zika virus infects human placental macrophages. Cell Host& Microbe, 2016, 20(1):83-90.
    [78] Bayer A, Lennemann NJ, Ouyang YS, Bramley JC, Morosky S, Marques ET, Cherry S, Sadovsky Y, Coyne CB. Type III interferons produced by human placental trophoblasts confer protection against zika virus infection. Cell Host& Microbe, 2016, 19(5):705-712.30.
    [55] Seesuay W, Jittavisutthikul S, Sae-Lim N, Sookrung N, Sakolvaree Y, Chaicumpa W. Human transbodies that interfere with the functions of Ebola virus VP35 protein in genome replication and transcription and innate immune antagonism. Emerging Microbes& Infections, 2018, 7(1):41.
    [56] Fernandez JC, Billecocq A, Durand JP, Cêtre-Sossah C, Cardinale E, Marianneau P, Pépin M, Tordo N, Bouloy M. The nonstructural protein NSs induces a variable antibody response in domestic ruminants naturally infected with Rift Valley fever virus. Clinical and Vaccine Immunology, 2012, 19(1):5-10.
    [57] Park MS, Shaw ML, Munoz-Jordan J, Cros JF, Nakaya T, Bouvier N, Palese P, Garcia-Sastre A, Basler CF. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. Journal of Virology, 2003, 77(2):1501-1511.
    [58] Hui XF, Zhang LL, Cao L, Huang K, Zhao Y, Zhang YF, Chen X, Lin X, Chen MZ, Jin ML. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduction and Targeted Therapy, 2021, 6(1):180.
    [59] Wang WB, Hu DW, Wu CF, Feng YQ, Li AX, Liu WY, Wang YC, Chen KL, Tian MF, Xiao F, Zhang Q, Shereen MA, Chen WJ, Pan P, Wan P, Wu KL, Wu JG. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathogens, 2020, 16(3):e1008335.
    [60] Jiang ZM, Wei FH, Zhang YY, Wang T, Gao WH, Yu SF, Sun HL, Pu J, Sun YP, Wang MY, Tong Q, Gao CJ, Chang KC, Liu JH. IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nature Microbiology, 2021, 6(7):932-945.
    [61] Zhang J, Liu H, Wei B. Immune response of T cells during herpes simplex virus type 1(HSV-1) infection. Journal of Zhejiang University Science B, 2017, 18(4):277-288.
    [62] Maruzuru Y, Ichinohe T, Sato R, Miyake K, Okano T, Suzuki T, Koshiba T, Koyanagi N, Tsuda S, Watanabe M, Arii J, Kato A, Kawaguchi Y. Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication. Cell Host& Microbe, 2018, 23(2):254-265.
    [63] Coulon PG, Dhanushkodi N, Prakash S, Srivastava R, Roy S, Alomari NI, Nguyen AM, Warsi WR, Ye C, Carlos-Cruz EA, Mai UT, Cruel AC, Ekmekciyan KM, Pearlman E, BenMohamed L. NLRP3, NLRP12, and IFI16 inflammasomes induction and caspase-1 activation triggered by virulent HSV-1 strains are associated with severe corneal inflammatory herpetic disease. Frontiers in Immunology, 2019, 10:1631.
    [64] Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d'Agay MF, Clauvel JP, Raphael M, Degos L. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood, 1995, 86(4):1276-1280.
    [65] Lee HR, Amatya R, Jung JU. Multi-step regulation of innate immune signaling by Kaposi's sarcoma-associated herpesvirus. Virus Research, 2015, 209:39-44.
    [66] Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host& Microbe, 2011, 9(5):363-375.
    [67] Zhang Y, Dittmer DP, Mieczkowski PA, Host KM, Fusco WG, Duncan JA, Damania B. RIG-I detects Kaposi's sarcoma-associated herpesvirus transcripts in a RNA polymerase III-independent manner. mBio, 2018, 9(4):e00823-18.
    [68] Abend JR, Ramalingam D, Kieffer-Kwon P, Uldrick TS, Yarchoan R, Ziegelbauer JM. Kaposi's sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the Toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. Journal of Virology, 2012, 86(21):11663-11674.
    [69] Broussard G, Damania B. KSHV:immune modulation and immunotherapy. Frontiers in Immunology, 2019, 10:3084.
    [70] Chen QZ, Luo F, Lu MX, Li N, Teng Y, Huang QL, Zhu N, Wang GY, Yue M, Zhang Y, Feng Y, Xiong HR, Hou W. HTNV-in
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

GE Hailiang, LI Su, YU Shaoxiong, LI Shuhong, LI Lianfeng, ZHOU Pingping, YANG Yuying, QIU Hua-Ji. Inflammatory responses to viral infections: a double-edged sword in the antiviral defense of host. [J]. Acta Microbiologica Sinica, 2022, 62(5): 1571-1586

Copy
Related Videos

Share
Article Metrics
  • Abstract:656
  • PDF: 1935
  • HTML: 1883
  • Cited by: 0
History
  • Received:September 10,2021
  • Revised:October 28,2021
  • Online: April 30,2022
Article QR Code