Research progress of microbes and related biogenic element cycle in Antarctic subglacial ecosystems
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [140]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The liquid water under the ice sheet of Antarctic continent consists of subglacial lakes, subglacial rivers/streams, ice-covered lakes, and water bodies under ice shelf. The subglacial aquatic ecosystems are featured with low temperature, darkness, and oligotrophy, and are dominated by microbes characteristic of complex community composition, diverse functions, and unique adaptation mechanisms. These microbes play important roles in biogeochemical cycling of elements. Hence, it is of great significance to clarify the microbial characteristics and their roles in biogeochemical cycles of elements in the subglacial aquatic ecosystems of Antarctic, which avails to reveal the evolution of life on the early Earth and explore life in the extraterrestrial planets. This review summarized the extreme environment conditions, microbial diversity, adaptation mechanisms, and microbial functions related to biogeochemical cycles of elements in subglacial aquatic ecosystems of the Antarctic. Moreover, we summed up the future research trends on Antarctic subglacial microbes.

    Reference
    [1] Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiology Reviews, 2013, 37(3):303-335.
    [2] Chaya A, Kurosawa N, Kawamata A, Kosugi M, Imura S. Community structures of bacteria, archaea, and eukaryotic microbes in the freshwater glacier lake yukidori-ike in Langhovde, east Antarctica. Diversity, 2019, 11(7):105.
    [3] Priscu JC, Tulaczyk S, Studinger M, Kennicutt Ii MC, Christner BC, Foreman CM. Antarctic subglacial water:origin, evolution and ecology//Vincent WF, Laybourn-Parry J. Polar lakes and rivers:limnology of Arctic and Antarctic aquatic ecosystems. USA:Oxford University Press, 2008:119-136.
    [4] Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, LIS GP, Lawson E, Ridgwell A, Dubnick A, Sharp MJ, Anesio AM, Butler CEH. Potential methane reservoirs beneath Antarctica. Nature, 2012, 488(7413):633-637.
    [5] Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Applied and Environmental Microbiology, 2005, 71(11):6986-6997.
    [6] Anesio AM, Lutz S, Chrismas NAM, Benning LG. The microbiome of glaciers and ice sheets. Npj Biofilms and Microbiomes, 2017, 3:10.
    [7] Mikucki JA, Lee PA, Ghosh D, Purcell AM, Mitchell AC, Mankoff KD, Fisher AT, Tulaczyk S, Carter S, Siegfried MR, Fricker HA, Hodson T, Coenen J, Powell R, Scherer R, Vick-Majors T, Achberger AA, Christner BC, Tranter M, Team WS. Subglacial Lake Whillans microbial biogeochemistry:a synthesis of current knowledge. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2059):20140290.
    [8] Jones RM, Goordial JM, Orcutt BN. Low energy subsurface environments as extraterrestrial analogs. Frontiers in Microbiology, 2018, 9:1605.
    [9] Wadham JL, Tranter M, Skidmore M, Hodson AJ, Priscu J, Lyons WB, Sharp M, Wynn P, Jackson M. Biogeochemical weathering under ice:size matters. Global Biogeochemical Cycles, 2010, 24(3):GB3025.
    [10] Vick-Majors TJ, Mitchell AC, Achberger AM, Christner BC, Dore JE, Michaud AB, Mikucki JA, Purcell AM, Skidmore ML, Priscu JC, Team WS. Physiological ecology of microorganisms in subglacial Lake Whillans. Frontiers in Microbiology, 2016, 7:1705.
    [11] Achberger AM, Christner BC, Michaud AB, Priscu JC, Skidmore ML, Vick-Majors TJ, Team WS. Microbial community structure of subglacial Lake Whillans, west Antarctica. Frontiers in Microbiology, 2016, 7:1457.
    [12] Michaud AB, Dore JE, Achberger AM, Christner BC, Mitchell AC, Skidmore ML, Vick-Majors TJ, Priscu JC. Microbial oxidation as a methane sink beneath the west Antarctic ice sheet. Nature Geoscience, 2017, 10(8):582-586.
    [13] Liu JT, Lu XL, Liu XY, Gao Y, Hu B, Jiao BH, Zheng H. Bioactive natural products from the Antarctic and Arctic organisms. Mini Reviews in Medicinal Chemistry, 2013, 13(4):617-626.
    [14] Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere:sea ice and glacial habitats. Nature Reviews Microbiology, 2015, 13(11):677-690.
    [15] Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature, 2001, 414(6864):603-609.
    [16] Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature, 2001, 409(6823):1092-1101.
    [17] Priscu JC, Wolf CF, Takacs CD, Fritsen CH, Laybourn-Parry J, Roberts EC, Sattler B, Lyons WB. Carbon transformations in a perennially ice-covered Antarctic lake. BioScience, 1999, 49(12):997-1008.
    [18] Bölter M, Beyer L, Stonehouse B. Antarctic coastal landscapes:characteristics, ecology and research//Bölter M, Beyer L. Geoecology of Antarctic ice-free coastal landscapes. Berlin:Springer International Publishing, 2002.
    [19] Rosa LH. Fungi of Antarctica diversity, ecology and biotechnological applications:diversity, ecology and biotechnological applications. Switzerland:Springer, 2019.
    [20] Livingstone SJ, Li Y, Rutishauser A, Sanderson RJ, Winter K, Mikucki JA, Björnsson H, Bowling JS, Chu W, Dow CF, Fricker HA, Mcmillan M, Ng FSL, Ross N, Siegert MJ, Siegfried M, Sole AJ. Subglacial lakes and their changing role in a warming climate. Nature Reviews Earth & Environment, 2022, 3:106-124.
    [21] Wingham DJ, Siegert MJ, Shepherd A, Muir AS. Rapid discharge connects Antarctic subglacial lakes. Nature, 2006, 440(7087):1033-1036.
    [22] Siegert MJ, Ross N, Le Brocq AM. Recent advances in understanding Antarctic subglacial lakes and hydrology. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 374(2059):20140306.
    [23] Siegert MJ, Tranter M, Ellis-Evans JC, Priscu JC, Berry Lyons W. The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrological Processes, 2003, 17(4):795-814.
    [24] Wright A, Siegert M. A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 2012, 24(6):659-664.
    [25] Denton GH, Sugden DE, Marchant DR, Hall BL, Wilch TI. East Antarctic ice sheet sensitivity to Pliocene climatic change from a dry valleys perspective. Geografiska Annaler:Series A, Physical Geography, 1993, 75(4):155-204.
    [26] Kapitsa AP, Ridley JK, De Q Robin G, Siegert MJ, Zotikov IA. A large deep freshwater lake beneath the ice of central east Antarctica. Nature, 1996, 381(6584):684-686.
    [27] Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni RS, D'Elia T, Morris PF, Rogers SO. Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS One, 2013, 8(7):e67221.
    [28] Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnology and Oceanography, 2006, 51(6):2485-2501.
    [29] Bulat SA, Alekhina IA, Lipenkov VY, Lukin VV, Marie D, Petit JR. Cell concentrations of microorganisms in glacial and lake ice of the Vostok ice core, east Antarctica. Microbiology, 2009, 78(6):808-810.
    [30] Siegfried MR, Fricker HA. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Annals of Glaciology, 2018, 59(76pt1):42-55.
    [31] Fricker HA, Scambos T, Bindschadler R, Padman L. An active subglacial water system in west Antarctica mapped from space. Science, 2007, 315(5818):1544-1548.
    [32] Siegfried MR, Fricker HA, Carter SP, Tulaczyk S. Episodic ice velocity fluctuations triggered by a subglacial flood in west Antarctica. Geophysical Research Letters, 2016, 43(6):2640-2648.
    [33] Smith BE, Fricker HA, Joughin IR, Tulaczyk S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003-2008). Journal of Glaciology, 2009, 55(192):573-595.
    [34] Fricker HA, Scambos T. Connected subglacial lake activity on lower Mercer and Whillans ice streams, west Antarctica, 2003-2008. Journal of Glaciology, 2009, 55(190):303-315.
    [35] Vick-Majors TJ, Michaud AB, Skidmore ML, Turetta C, Barbante C, Christner BC, Dore JE, Christianson K, Mitchell AC, Achberger AM, Mikucki JA, Priscu JC. Biogeochemical connectivity between freshwater ecosystems beneath the west Antarctic ice sheet and the sub-ice marine environment. Global Biogeochemical Cycles, 2020, 34(3):e2019GB006446.
    [36] Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. Glacial ecosystems. Ecological Monographs, 2008, 78(1):41-67.
    [37] Green WJ, Lyons WB. The saline lakes of the McMurdo dry valleys, Antarctica. Aquatic Geochemistry, 2009, 15(1/2):321-348.
    [38] Ellis-Evans JC. Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity&Conservation, 1996, 5(11):1395-1431.
    [39] Lawson J, Doran PT, Kenig F, Des marais DJ, Priscu JC. Stable carbon and nitrogen isotopic. Aquatic Geochemistry, 2004, 10(3/4):269-301.
    [40] Dolhi JM, Teufel AG, Kong WD, Morgan-Kiss RM. Diversity and spatial distribution of autotrophic communities within and between ice-covered Antarctic lakes (McMurdo Dry Valleys). Limnology and Oceanography, 2015, 60(3):977-991.
    [41] Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 2011, 162(3):346-361.
    [42] Anesio AM, Laybourn-Parry J. Glaciers and ice sheets as a biome. Trends in Ecology&Evolution, 2012, 27(4):219-225.
    [43] Li W, Morgan-Kiss RM. Influence of environmental drivers and potential interactions on the distribution of microbial communities from three permanently stratified Antarctic lakes. Frontiers in Microbiology, 2019, 10:1067.
    [44] Kwon M, Kim M, Takacs-Vesbach C, Lee J, Hong SG, Kim SJ, Priscu JC, Kim OS. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environmental Microbiology, 2017, 19(6):2258-2271.
    [45] Roberts EC, Laybourn-Parry J, McKnight DM, Novarino G. Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica. Freshwater Biology, 2000, 44(4):649-661.
    [46] Jungblut AD, Hawes I, MacKey TJ, Krusor M, Doran PT, Sumner DY, Eisen JA, Hillman C, Goroncy AK. Microbial mat communities along an oxygen gradient in a perennially ice-covered Antarctic lake. Applied and Environmental Microbiology, 2015, 82(2):620-630.
    [47] Dillon ML, Hawes I, Jungblut AD, MacKey TJ, Eisen JA, Doran PT, Sumner DY. Environmental control on the distribution of metabolic strategies of benthic microbial mats in Lake Fryxell, Antarctica. PLoS One, 2020, 15(4):e0231053.
    [48] Lee PA, Priscu JC, DiTullio GR, Riseman SF, Tursich N, De Mora SJ. Elevated levels of dimethylated-sulfur compounds in Lake Bonney, a poorly ventilated Antarctic lake. Limnology and Oceanography, 2004, 49(4):1044-1055.
    [49] Lee PA, Mikucki JA, Foreman CM, Priscu JC, DiTullio GR, Riseman SF, Mora SJ, Wolf CF, Kester L. Thermodynamic constraints on microbially mediated processes in lakes of the McMurdo Dry Valleys, Antarctica. Geomicrobiology Journal, 2004, 21(3):221-237.
    [50] Bindschadler R, Choi H, Wichlacz A, Bingham R, Bohlander J, Brunt K, Corr H, Drews R, Fricker H, Hall M, Hindmarsh R, Kohler J, Padman L, Rack W, Rotschky G, Urbini S, Vornberger P, Young N. Getting around Antarctica:new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year. The Cryosphere, 2011, 5(15):569-588.
    [51] Rignot E, Mouginot J, Scheuchl B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophysical Research Letters, 2011, 38(10):L10504.
    [52] Fricker HA, Padman L. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 2006, 33(15):L15502.
    [53] Ingels J, Aronson RB, Smith CR, Baco A, Bik HM, Blake JA, Brandt A, Cape M, Demaster D, Dolan E, Domack E, Fire S, Geisz H, Gigliotti M, Griffiths H, Halanych KM, Havermans C, Huettmann F, Ishman S, Kranz SA, Leventer A, Mahon AR, McClintock J, McCormick ML, Mitchell BG, Murray AE, Peck L, Rogers A, Shoplock B, Smith KE, Steffel B, Stukel MR, Sweetman AK, Taylor M, Thurber AR, Truffer M, Putte A, Vanreusel A, Zamora-Duran MA. Antarctic ecosystem responses following ice-shelf collapse and iceberg calving:science review and future research. WIREs Climate Change, 2021, 12(1):e682.
    [54] Horgan HJ, Alley RB, Christianson K, Jacobel RW, Anandakrishnan S, Muto A, Beem LH, Siegfried MR. Estuaries beneath ice sheets. Geology, 2013, 41(11):1159-1162.
    [55] Rignot E, Jacobs S, Mouginot J, Scheuchl B. Ice-shelf melting around Antarctica. Science, 2013, 341(6143):266-270.
    [56] Statham PJ, Skidmore M, Tranter M. Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Global Biogeochemical Cycles, 2008, 22(3):GB3013.
    [57] Skidmore M. Microbial communities in Antarctic subglacial aquatic environments. Geophysical Monograph Series. Washington, D. C.:American Geophysical Union, 2011:61-81.
    [58] Mitchell AC, Lafrenière MJ, Skidmore ML, Boyd ES. Influence of bedrock mineral composition on microbial diversity in a subglacial environment. Geology, 2013, 41(8):855-858.
    [59] Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H. Bacteria beneath the west Antarctic ice sheet. Environmental Microbiology, 2009, 11(3):609-615.
    [60] Campen R, Kowalski J, Lyons WB, Tulaczyk S, Dachwald B, Pettit E, Welch KA, Mikucki JA. Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert. Environmental Microbiology, 2019, 21(7):2290-2306.
    [61] Mikucki JA, Priscu JC. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied and Environmental Microbiology, 2007, 73(12):4029-4039.
    [62] Bulat SA. Microbiology of the subglacial Lake Vostok:first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2059):20140292.
    [63] Fox D. EXCLUSIVE:tiny animal carcasses found in buried Antarctic lake. Nature, 2019, 565(7740):405-406.
    [64] Pearce DA, Magiopoulos I, Mowlem M, Tranter M, Holt G, Woodward J, Siegert MJ. Microbiology:lessons from a first attempt at Lake Ellsworth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2059):20140291.
    [65] Priscu JC, Achberger AM, Cahoon JE, Christner BC, Edwards RL, Jones WL, Michaud AB, Siegfried MR, Skidmore ML, Spigel RH, Switzer GW, Tulaczyk S, Vick-Majors TJ. A microbiologically clean strategy for access to the Whillans ice stream subglacial environment. Antarctic Science, 2013, 25(5):637-647.
    [66] Michaud AB, Vick-Majors TJ, Achberger AM, Skidmore ML, Christner BC, Tranter M, Priscu JC. Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Science, 2020, 32(5):329-340.
    [67] Gura C, Rogers SO. Metatranscriptomic and metagenomic analysis of biological diversity in subglacial Lake Vostok (Antarctica). Biology, 2020, 9(3):55.
    [68] Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology, 2001, 3(9):570-577.
    [69] D'Elia T, Veerapaneni R, Rogers SO. Isolation of microbes from Lake Vostok accretion ice. Applied and Environmental Microbiology, 2008, 74(15):4962-4965.
    [70] Tang C, Madigan MT, Lanoil B. Bacterial and archaeal diversity in sediments of west Lake Bonney, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 2013, 79(3):1034-1038.
    [71] Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, Michaud AB, Mikucki JA, Mitchell AC, Skidmore ML, Vick-Majors TJ. A microbial ecosystem beneath the west Antarctic ice sheet. Nature, 2014, 512(7514):310-313.
    [72] Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in Microbiology, 2010, 18(8):331-340.
    [73] Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC, Ghosh D, Michaud AB, Mitchell AC, Priscu JC, Scherer R, Skidmore ML, Vick-Majors TJ, Team TWS. Microbial sulfur transformations in sediments from subglacial Lake Whillans. Frontiers in Microbiology, 2014, 5:594.
    [74] Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T. Comparative genomics of freshwater Fe-oxidizing bacteria:implications for physiology, ecology, and systematics. Frontiers in Microbiology, 2013, 4:254.
    [75] Ward BB, Priscu JC. Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiologia, 1997, 347(1/2/3):57-68.
    [76] Voytek MA, Priscu JC, Ward BB. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Molecular Ecology of Aquatic Communities. Dordrecht:Springer Netherlands, 1999:113-130.
    [77] Purdy KJ, Hawes I, Bryant CL, Fallick AE, Nedwell DB. Estimates of sulphate reduction rates in Lake Vanda, Antarctica support the proposed recent history of the lake. Antarctic Science, 2001, 13(4):393-399.
    [78] Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA. Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 2005, 71(10):6353-6359.
    [79] Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA. Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica. Applied and Environmental Microbiology, 2006, 72(2):1663-1666.
    [80] Sattley WM, Madigan MT. Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiology Letters, 2007, 272(1):48-54.
    [81] Kong WD, Dolhi JM, Chiuchiolo A, Priscu J, Morgan-Kiss RM. Evidence of form II RubisCO (cbbM) in a perennially ice-covered Antarctic lake. FEMS Microbiology Ecology, 2012, 82(2):491-500.
    [82] Takacs CD, Priscu JC. Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica:production and biomass loss over four seasons. Microbial Ecology, 1998, 36(3):239-250.
    [83] Kharroub K, Aguilera M, Jiménez-Pranteda ML, González-Paredes A, Ramos-Cormenzana A, Monteoliva-Sánchez M. Marinobacter oulmenensis sp. nov., a moderately halophilic bacterium isolated from brine of a salt concentrator. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 9):2210-2214.
    [84] López-Pérez M, Rodriguez-Valera F. The family Alteromonadaceae//Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F. The prokaryotes. Berlin, Heidelberg:Springer, 2014:69-92.
    [85] Andrei AŞ, Robeson MS II, Baricz A, Coman C, Muntean V, Ionescu A, Etiope G, Alexe M, Sicora CI, Podar M, Banciu HL. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. The ISME Journal, 2015, 9(12):2642-2656.
    [86] Teske A, Hinrichs KU, Edgcomb V, De Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW. Microbial diversity of hydrothermal sediments in the Guaymas Basin:evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology, 2002, 68(4):1994-2007.
    [87] Kuever J. The family Desulfobulbaceae//Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F. The prokaryotes. Berlin, Heidelberg:Springer, 2014:75-86.
    [88] Griffiths HJ, Anker P, Linse K, Maxwell J, Post AL, Stevens C, Tulaczyk S, Smith JA. Breaking all the rules:the first recorded hard substrate sessile benthic community far beneath an Antarctic ice shelf. Frontiers in Marine Science, 2021, 8:642040.
    [89] Fox D. Life at hell's gate. Scientific American, 2015, 313(1):46-53.
    [90] Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA. A contemporary microbially maintained subglacial ferrous ocean. Science, 2009, 324(5925):397-400.
    [91] Feller G, Gerday C. Psychrophilic enzymes:hot topics in cold adaptation. Nature Reviews Microbiology, 2003, 1(3):200-208.
    [92] Weinstein RN, Montiel PO, Johnstone K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia, 2000, 92(2):222-229.
    [93] Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa JP, Gerday C. Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TACII18. The Journal of Biological Chemistry, 2000, 275(15):11147-11153.
    [94] Park HJ, Lee CW, Kim D, Do H, Han SJ, Kim JE, Koo BH, Lee JH, Yim JH. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4Å resolution:structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS One, 2018, 13(2):e0191740.
    [95] Park SH, Kim SJ, Park S, Kim HK. Characterization of organic solvent-tolerant lipolytic enzyme from Marinobacter lipolyticus isolated from the Antarctic Ocean. Applied Biochemistry and Biotechnology, 2019, 187(3):1046-1060.
    [96] Del-Cid A, Ubilla P, Ravanal MC, Medina E, Vaca I, Levicán G, Eyzaguirre J, Chávez R. Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Applied Biochemistry and Biotechnology, 2014, 172(1):524-532.
    [97] D'Amico S, Collins T, Marx JC, Feller G, Gerday C. Psychrophilic microorganisms:challenges for life. EMBO Reports, 2006, 7(4):385-389.
    [98] Lylloff JE, Hansen LBS, Jepsen M, Sanggaard KW, Vester JK, Enghild JJ, Sørensen SJ, Stougaard P, Glaring MA. Genomic and exoproteomic analyses of cold-and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases. Microbial Biotechnology, 2016, 9(2):245-256.
    [99] Lee YM, Jung YJ, Hong SG, Kim JH, Lee HK. Diversity and physiological characteristics of culturable bacteria from marine sediments of Ross Sea, Antarctica. The Korean Journal of Microbiology, 2014, 50(2):119-127.
    [100] Tomova I, Stoilova-Disheva M, Vasileva-Tonkova E. Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, east Antarctica. Polish Polar Research, 2014, 35(4):593-607.
    [101] Tsuji M. Genetic diversity of yeasts from east Ongul Island, east Antarctica and their extracellular enzymes secretion. Polar Biology, 2018, 41(2):249-258.
    [102] Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles:Life Under Extreme Conditions, 2016, 20(4):479-491.
    [103] 丁新彪,丛柏林,张扬,靳永轩,祝茜,王能飞,黄晓航.南极普里兹湾及邻近海域沉积物微生物多样性与生理生化研究.海洋科学进展, 2014, 32(2):209-218. Ding XB, Cong BL, Zhang Y, Jin YX, Zhu Q, Wang NF, Huang XH. Biodiversity, physiological and biochemical characteristics of microorganisms in the sediments surface from the Prydz Bay, Antarctica. Advances in Marine Science, 2014, 32(2):209-218.(in Chinese)
    [104] 张丽珉,赵琳,丛柏林.南极罗斯海区域可培养微生物分离鉴定及产低温酶能力初步筛选.海洋学报, 2018, 40(8):152-164. Zhang LM, Zhao L, Cong BL. Diversity of culturable bacteria and fungi isolated from Ross Sea region of Antarctica separation, identification and initial screening for the ability to produce low-temperature enzymes. Acta Oceanologica Sinica, 2018, 40(8):152-164.(in Chinese)
    [105] Shivaji S, Prasad GS. Antarctic yeasts:biodiversity and potential applications.//Satyanarayana T, Gotthard. K. Yeast biotechnology:diversity and applications. Dordrecht:Springer Netherlands, 2009:3-18.
    [106] Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S. A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles:Life Under Extreme Conditions, 2003, 7(6):435-442.
    [107] Brizzio S, Turchetti B, De García V, Libkind D, Buzzini P, Van Broock M. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology, 2007, 53(4):519-525.
    [108] Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiology, 2012, 12:251.
    [109] Buzzini P, Branda E, Goretti M, Turchetti B. Psychrophilic yeasts from worldwide glacial habitats:diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology, 2012, 82(2):217-241.
    [110] Aurilia V, Parracino A, D'Auria S. Microbial carbohydrate esterases in cold adapted environments. Gene, 2008, 410(2):234-240.
    [111] Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes:a review. Applied Microbiology and Biotechnology, 2006, 71(6):773-782.
    [112] Raymond JA, Christner BC, Schuster SC. A bacterial ice-binding protein from the Vostok ice core. Extremophiles:Life Under Extreme Conditions, 2008, 12(5):713-717.
    [113] Gilbert JA, Davies PL, Laybourn-Parry J. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiology Letters, 2005, 245(1):67-72.
    [114] Siddiqui KS, Williams TJ, Wilkins D, Yau S, Allen MA, Brown MV, Lauro FM, Cavicchioli R. Psychrophiles. Annual Review of Earth and Planetary Sciences, 2013, 41:87-115.
    [115] Ewert M, Deming JW. Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Annals of Glaciology, 2011, 52(57):111-117.
    [116] Feng S, Powell SM, Wilson R, Bowman JP. Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biology and Evolution, 2014, 6(1):133-148.
    [117] Raymond JA, Fritsen C, Shen KT. An ice-binding protein from an Antarctic Sea ice bacterium. FEMS Microbiology Ecology, 2007, 61(2):214-221.
    [118] Collins RE, Deming JW. An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles:Life Under Extreme Conditions, 2013, 17(4):601-610.
    [119] DeMaere MZ, Williams TJ, Allen MA, Brown MV, Gibson JAE, Rich J, Lauro FM, Dyall-Smith M, Davenport KW, Woyke T, Kyrpides NC, Tringe SG, Cavicchioli R. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. PNAS, 2013, 110(42):16939-16944.
    [120] Anesio AM, Bellas CM. Are low temperature habitats hot spots of microbial evolution driven by viruses?Trends in Microbiology, 2011, 19(2):52-57.
    [121] Hood E, Battin TJ, Fellman J, O'Neel S, Spencer RGM. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 2015, 8(2):91-96.
    [122] Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS, Banfield JF. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 2016, 7:13219.
    [123] Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K, Fukuda A, Iwatsuki T, Mizuno T, Komatsu DD, Tsunogai U, Ishimura T, Amano Y, Thomas BC, Banfield JF, Suzuki Y. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a
    [124] Vick-Majors TJ, Priscu JC, A Amaral-Zettler L. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. The ISME Journal, 2014, 8(4):778-789.
    [125] Dubnick A, Wadham J, Tranter M, Sharp M, Orwin J, Barker J, Bagshaw E, Fitzsimons S. Trickle or treat:the dynamics of nutrient export from polar glaciers. Hydrological Processes, 2017, 31(9):1776-1789.
    [126] Wadham JL, Tranter M, Tulaczyk S, Sharp M. Subglacial methanogenesis:a potential climatic amplifier?Global Biogeochemical Cycles, 2008, 22(2):GB2021.
    [127] Laybourn-parry J, Madan NJ, Marshall WA, Marchant HJ, Wright SW. Carbon dynamics in an ultra-oligotrophic epishelf lake (Beaver Lake, Antarctica) in summer. Freshwater Biology, 2006, 51(6):1116-1130.
    [128] Vincent W, Laybourn-Parry J. Polar lakes and riverslimnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, USA, 2008
    [129] Smith RL, Miller LG, Howes BL. The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, Antarctic lake. Biogeochemistry, 1993, 21(2):95-115.
    [130] Wand U, Samarkin VA, Nitzsche HM, Hubberten HW. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, east Antarctica. Limnology and Oceanography, 2006, 51(2):1180-1194.
    [131] Coolen MJL, Muyzer G, Rijpstra WIC, Schouten S, Volkman JK, Sinninghe Damsté JS. Combined DNA and lipid analyses of sediments reveal changes in holocene haptophyte and diatom populations in an Antarctic lake. Earth and Planetary Science Letters, 2004, 223(1/2):225-239.
    [132] Ma HM, Yan WK, Xiao X, Shi GT, Li YS, Sun B, Dou YK, Zhang Y. Ex situ culturing experiments revealed psychrophilic hydrogentrophic methanogenesis being the potential dominant methane-producing pathway in subglacial sediment in Larsemann Hills, Antarctic. Frontiers in Microbiology, 2018, 9:237.
    [133] Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafrenière MJ, Shock EL, Peters JW, Skidmore M. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Applied and Environmental Microbiology, 2011, 77(14):4778-4787.
    [134] Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B. The dynamic bacterial communities of a melting high Arctic glacier snowpack. The ISME Journal, 2013, 7(9):1814-1826.
    [135] Hodson A, Brock B, Pearce D, Laybourn-Parry J, Tranter M. Cryospheric ecosystems:a synthesis of snowpack and glacial research. Environmental Research Letters, 2015, 10(11):110201.
    [136] Kong WD, Ream DC, Priscu JC, Morgan-Kiss RM. Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition. Applied and Environmental Microbiology, 2012, 78(12):4358-4366.
    [137] 唐阳,刘永超,杨渐,蒋宏忱.青藏高原北部湖泊表层沉积物参与卡尔文循环的固碳基因多样性及其影响因素.地球科学, 2018, 43(S1):19-30. Tang Y, Liu YC, Yang J, Jiang HC. Gene diversity involved in Kalvin pathway of carbon fixation and its response to environmental variables in surface sediments of the northern Qinghai-Tibetan Plateau lakes. Earth Science, 2018, 43(S1):19-30.(in Chinese)
    [138] Wang BC, Huang JR, Yang J, Jiang HC, Xiao HY, Han JB, Zhang XY. Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiology Ecology, 2021, 97(4):fiab037.
    [139] Tabita FR, Hanson TE, Li HY, Satagopan S, Singh J, Chan S. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiology and Molecular Biology Reviews, 2007, 71(4):576-599.
    [140] Sattley WM, Madigan MT. Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Applied and Environmental Microbiology, 2006, 72(8):5562-5568.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHAO Zhuoli, LI Bing, JIANG Hongchen. Research progress of microbes and related biogenic element cycle in Antarctic subglacial ecosystems. [J]. Acta Microbiologica Sinica, 2022, 62(6): 2165-2187

Copy
Share
Article Metrics
  • Abstract:460
  • PDF: 1133
  • HTML: 1694
  • Cited by: 0
History
  • Received:November 21,2021
  • Revised:February 25,2022
  • Online: June 13,2022
Article QR Code