Research progress of CRISPR/Cas system in Campylobacter jejuni
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [55]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    CRISPR/Cas system is distributed in most bacteria, with immune defense mechanisms and showing polymorphisms among different species. Campylobacter jejuni is an important foodborne pathogen worldwide, and the disease caused by infection with it is also a typical self-limiting disease. Its pathogenic mechanism is complex, which has not been clearly clarified, and together with the polymorphisms of CRISPR/Cas system in C.jejuni, there exist many limitations in analyzing the relationship between CRISPR/Cas system and C.jejuni. In this paper, the structure, mechanism and technical application of CRISPR/Cas system in C.jejuni were reviewed, which provided new ideas for exploring the pathogenic mechanism of C.jejuni.

    Reference
    [1] Koonin EV, Makarova KS. CRISPR-Cas:evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biology, 2013, 10(5):679-686.
    [2] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12):5429-5433.
    [3] Jansen R, Van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6):1565-1575.
    [4] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819):1709-1712.
    [5] Ueno T, Kon T, Kurihara AI, Tomiyama M. Unilateral oculomotor nerve palsy following Campylobacter infection:a mild form of miller fisher syndrome without Ataxia. Internal Medicine:Tokyo, Japan, 2017, 56(21):2929-2932.
    [6] Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, Van Der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6):467-477.
    [7] Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, VenclovasČ, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, Van Der Oost J, Barrangou R, Koonin EV. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18(2):67-83.
    [8] Schouls LM, Reulen S, Duim B, Wagenaar JA, Willems RJL, Dingle KE, Colles FM, Van Embden JDA. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing:strain diversity, host range, and recombination. Journal of Clinical Microbiology, 2003, 41(1):15-26.
    [9] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8:172.
    [10] Louwen R, Staals RHJ, Endtz HP, Van Baarlen P, Van Der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiology and Molecular Biology Reviews:MMBR, 2014, 78(1):74-88.
    [11] Tang L. Exploring class 1 CRISPR systems. Nature Methods, 2019, 16(11):1079.
    [12] Yamada M, Watanabe Y, Gootenberg JS, Hirano H, Ran FA, Nakane T, Ishitani R, Zhang F, Nishimasu H, Nureki O. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems. Molecular Cell, 2017, 65(6):1109-1121.
    [13] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096):816-821.
    [14] Christie KA, Kleinstiver BP. Making the cut with PAMless CRISPR-Cas enzymes. Trends in Genetics, 2021, 37(12):1053-1055.
    [15] Mir A, Edraki A, Lee J, Sontheimer EJ. Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chemical Biology, 2018, 13(2):357-365.
    [16] 张博,姚学萍,曹随忠,王印,杨泽晓.空肠弯曲菌CRISPR-Cas系统生物信息学分析.中国预防兽医学报, 2018, 40(10):960-964.Zhang B, Yao XP, Cao SZ, Wang Y, Yang ZX. Bioinformatic analysis of CRISPR-Cas system in Campylobacter jejuni. Chinese Journal of Preventive Veterinary Medicine, 2018, 40(10):960-964.(in Chinese)
    [17] 吴瑜凡,申进玲,崔思宇,郭旸,吴福平,王翔,邵景东.空肠弯曲菌中规律成簇间隔短回文重复序列(CRISPR)的检测与结构分析.食品科学, 2018, 39(24):139-144.Wu YF, Shen JL, Cui SY, Guo Y, Wu FP, Wang X, Shao JD. Detection and structural analysis of clustered regularly interspaced short palindromic repeat (CRISPR) regions in Campylobacter jejuni. Food Science, 2018, 39(24):139-144.(in Chinese)
    [18] Yeh HY, Awad A. Genotyping of Campylobacter jejuni isolates from poultry by clustered regularly interspaced short palindromic repeats (CRISPR). Current Microbiology, 2020, 77(8):1647-1652.
    [19] Pearson BM, Louwen R, Van Baarlen P, Van Vliet AH. Differential distribution of type II CRISPR-Cas systems in agricultural and nonagricultural Campylobacter coli and Campylobacter jejuni isolates correlates with lack of shared environments. Genome Biology and Evolution, 2015, 7(9):2663-2679.
    [20] Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov KV, Koonin EV. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio, 2017, 8(5):e01397-17.
    [21] Wang JY, Li JZ, Zhao HT, Sheng G, Wang M, Yin ML, Wang YL. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015, 163(4):840-853.
    [22] Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA. Structures of the CRISPR genome integration complex. Science, 2017, 357(6356):1113-1118.
    [23] Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5):935-949.
    [24] NierzwickiŁ, Arantes PR, Saha A, Palermo G. Establishing the allosteric mechanism in CRISPR-Cas9. WIREs Computational Molecular Science, 2021, 11(3):e1503.
    [25] Hooton SPT, Connerton IF. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. Frontiers in Microbiology, 2015, 5:744.
    [26] He Y, Wang MS, Liu MF, Huang L, Liu CY, Zhang X, Yi HB, Cheng AC, Zhu DK, Yang Q, Wu Y, Zhao XX, Chen S, Jia RY, Zhang SQ, Liu YY, Yu YL, Zhang L. Cas1 and Cas2 from the type II-C CRISPR-Cas system of Riemerella anatipestifer are required for spacer acquisition. Frontiers in Cellular and Infection Microbiology, 2018, 8:195.
    [27] Hooton S, D'Angelantonio D, Hu Y, Connerton PL, Aprea G, Connerton IF. Campylobacter bacteriophage DA10:an excised temperate bacteriophage targeted by CRISPR-Cas. BMC Genomics, 2020, 21(1):400.
    [28] Van Vliet AHM, Charity OJ, Reuter M. A Campylobacter integrative and conjugative element with a CRISPR-Cas9 system targeting competing plasmids:a history of plasmid warfare?Microbial Genomics, 2021, 7(11):000729.
    [29] Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320):67-71.
    [30] Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, Kodama T, Abe H, Nakayama K, Kurokawa K, Tobe T, Hattori M, Hayashi T. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(42):17939-17944.
    [31] Toro M, Cao GJ, Ju WT, Allard M, Barrangou R, Zhao SH, Brown E, Meng JH. Association of clustered regularly interspaced short palindromic repeat (CRISPR) elements with specific serotypes and virulence potential of shiga toxin-producing Escherichia coli. Applied and Environmental Microbiology, 2014, 80(4):1411-1420.
    [32] Shabbir MAB, Tang YP, Xu ZH, Lin MY, Cheng GY, Dai MH, Wang X, Liu ZL, Yuan ZH, Hao HH. The involvement of the Cas9 gene in virulence of Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2018, 8:285.
    [33] Shabbir MA, Wu Q, Shabbir MZ, Sajid A, Ahmed S, Sattar A, Tang YP, Li J, Maan MK, Hao HH, Yuan ZH. The CRISPR-Cas system promotes antimicrobial resistance in Campylobacter jejuni. Future Microbiology, 2018, 13:1757-1774.
    [34] Adiguzel MC, Goulart DB, Wu ZW, Pang JJ, Cengiz S, Zhang QJ, Sahin O. Distribution of CRISPR types in fluoroquinolone-resistant Campylobacter jejuni isolates. Pathogens:Basel, Switzerland, 2021, 10(3):345.
    [35] Louwen R, Horst-Kreft D, De Boer AG, Van Der Graaf L, De Knegt G, Hamersma M, Heikema AP, Timms AR, Jacobs BC, Wagenaar JA, Endtz HP, Van Der Oost J, Wells JM, Nieuwenhuis EES, Van Vliet AHM, Willemsen PTJ, Van Baarlen P, Van Belkum A. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. European Journal of Clinical Microbiology& Infectious Diseases:Official Publication of the European Society of Clinical Microbiology, 2013, 32(2):207-226.
    [36] Tremblay CL, Charlebois A, Masson L, Archambault M. Characterization of hospital-associated lineages of ampicillin-resistant Enterococcus faecium from clinical cases in dogs and humans. Frontiers in Microbiology, 2013, 4:245.
    [37] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology:Reading, England, 2005, 151:653-663.
    [38] Grissa I, Bouchon P, Pourcel C, Vergnaud G. On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie, 2008, 90(4):660-668.
    [39] Shariat N, Dudley E. CRISPR typing of Salmonella isolates. Salmonella, 2021, 2182:39-44.
    [40] Xie XL, Hu YC, Xu YH, Yin KQ, Li Y, Chen Y, Xia J, Xu LJ, Liu ZJ, Geng SZ, Li QC, Jiao XN, Chen X, Pan ZM. Genetic analysis of Salmonella enterica serovar gallinarum biovar pullorum based on characterization and evolution of CRISPR sequence. Veterinary Microbiology, 2017, 203:81-87.
    [41] Yin S, Jensen MA, Bai JW, Debroy C, Barrangou R, Dudley EG. The evolutionary divergence of Shiga toxin-producing Escherichia coli is reflected in clustered regularly interspaced short palindromic repeat (CRISPR) spacer composition. Applied and Environmental Microbiology, 2013, 79(18):5710-5720.
    [42] Barrangou R, Dudley EG. CRISPR-based typing and next-generation tracking technologies. Annual Review of Food Science and Technology, 2016, 7:395-411.
    [43] Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of genetically monomorphic bacteria:DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One, 2009, 4(11):e7815.
    [44] Kovanen SM, Kivistö RI, Rossi M, Hänninen ML. A combination of MLST and CRISPR typing reveals dominant Campylobacter jejuni types in organically farmed laying hens. Journal of Applied Microbiology, 2014, 117(1):249-257.
    [45] Ogrodzki P, Forsythe SJ. DNA-sequence based typing of the Cronobacter genus using MLST, CRISPR-Cas array and capsular profiling. Frontiers in Microbiology, 2017, 8:1875.
    [46] Van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. The Lancet Neurology, 2008, 7(10):939-950.
    [47] Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7):397-405.
    [48] Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3):233-239.
    [49] Golkar Z. CRISPR:a journey of gene-editing based medicine. Genes& Genomics, 2020, 42(12):1369-1380.
    [50] Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 2017, 8:14500.
    [51] Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y, Kremers GJ, Van Cappellen WA, Horst-Kreft D, Laffeber C, Lebbink JHG, Bruens S, Gaskin D, Beerens D, Klunder M, Joosten R, Demmers JAA, Van Gent D, Mouton JW, Van Der Spek PJ, Van Der Oost J, Van Baarlen P, Louwen R. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Science Advances, 2020, 6(25):eaaz4849.
    [52] Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C, Marathe SA. The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella. Scientific Reports, 2020, 10:21156.
    [53] Perez M, Angers B, Young CR, Juniper SK. Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microbial Genomics, 2021, 7(8):000625.
    [54] Mortensen K, Lam TJ, Ye YZ. Comparison of CRISPR-Cas immune systems in healthcare-related pathogens. Frontiers in Microbiology, 2021, 12:758782.
    [55] Elmi A, Nasher F, Dorrell N, Wren B, Gundogdu O. Revisiting Campylobacter jejuni virulence and fitness factors:role in sensing, adapting, and competing. Frontiers in Cellular and Infection Microbiology, 2021, 10:607704.
    Related
    Cited by
Get Citation

LV Hongyue, ZANG Xiaoqi, HUANG Pingyu, JIAO Xin'an, HUANG Jinlin. Research progress of CRISPR/Cas system in Campylobacter jejuni. [J]. Acta Microbiologica Sinica, 2022, 62(7): 2455-2465

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 31,2021
  • Revised:February 21,2022
  • Online: July 06,2022
  • Published: July 04,2022
Article QR Code