Research progress of circular bacteriocin
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Bacteriocins are a class of ribosomally synthesized antimicrobial peptides produced by bacteria, which endow bacteriocinogenic strains with unique survival advantages. Different from linear bacteriocins, circular bacteriocins have unique N-to-C terminal covalent linkage, and thus they have strong heat tolerance, adaptability to a wide range of pH, as well as certain resistance to protease. Therefore, they show great potential in food antisepsis and antagonization of resistance bacteria. Circular bacteriocins show higher similarity in tertiary structure than in primary structure, laying a basis for the classification. The biosynthesis mechanism of circular bacteriocins is still unclear, whereas the cyclization mechanism is attracting the interest of scholars, given that it can provide scaffolds for the synthesis and the modification of other types of peptide. The antibacterial mechanism of circular bacteriocins is mainly associated with perforation on the cell membrane and the consequential outflow of intracellular substances. With the antibacterial activity similar to or different from antibiotics, they can be potential candidates against the resistance pathogens. In this paper, research on circular bacteriocins was summarized, and the structure-activity relationship, biosynthesis pathway, the mode of action, as well as the application potential of them were highlighted, respectively.

    Reference
    [1] Xin BY, Liu HL, Zheng JS, Xie CS, Gao Y, Dai DD, Peng DH, Ruan LF, Chen HC, Sun M. In silico analysis highlights the diversity and novelty of circular bacteriocins in sequenced microbial genomes. mSystems, 2020, 5(3):e00047-e00020.
    [2] Maqueda M, Sánchez-Hidalgo M, Fernández M, Montalbán-López M, Valdivia E, Martínez-Bueno M. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiology Reviews, 2008, 32(1):2-22.
    [3] Martin-Visscher LA, Gong XD, Duszyk M, Vederas JC. The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. Journal of Biological Chemistry, 2009, 284(42):28674-28681.
    [4] Gálvez A, Maqueda M, Valdivia E, Quesada A, Montoya E. Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Canadian Journal of Microbiology, 1986, 32(10):765-771.
    [5] Burgos MJG, Pulido RP, Del Carmen López Aguayo M, Gálvez A, Lucas R. The cyclic antibacterial peptide enterocin AS-48:isolation, mode of action, and possible food applications. International Journal of Molecular Sciences, 2014, 15(12):22706-22727.
    [6] Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J. Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Applied and Environmental Microbiology, 2003, 69(10):5839-5848.
    [7] Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin:a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology (Reading), 2007, 153(5):1619-1630.
    [8] Martin-Visscher LA, Van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, Vederas JC. Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Applied and Environmental Microbiology, 2008, 74(15):4756-4763.
    [9] Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto K. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Applied and Environmental Microbiology, 2009, 75(6):1552-1558.
    [10] Gabrielsen C, Brede DA, Salehian Z, Nes IF, Diep DB. Functional genetic analysis of the GarML gene cluster in Lactococcus garvieae DCC43 gives new insights into circular bacteriocin biosynthesis. Journal of Bacteriology, 2014, 196(5):911-919.
    [11] Masuda Y, Ono H, Kitagawa H, Ito H, Mu FQ, Sawa N, Zendo T, Sonomoto K. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Applied and Environmental Microbiology, 2011, 77(22):8164-8170.
    [12] Scholz R, Vater J, Budiharjo A, Wang ZY, He YQ, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. Journal of Bacteriology, 2014, 196(10):1842-1852.
    [13] Perez RH, Ishibashi N, Inoue T, Himeno K, Masuda Y, Sawa N, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K. Functional analysis of genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. Journal of Bacteriology, 2016, 198(2):291-300.
    [14] Van Heel AJ, Montalban-Lopez M, Oliveau Q, Kuipers OP. Genome-guided identification of novel head-to-tail cyclized antimicrobial peptides, exemplified by the discovery of pumilarin. Microbial Genomics, 2017, 3(10):e000134.
    [15] Xin BY, Xu HT, Liu HL, Liu S, Wang JJ, Xue JP, Zhang F, Deng SL, Zeng HW, Zeng X, Xu DY, Zhao Y, Li F, Wang GL. Identification and characterization of a novel circular bacteriocin, bacicyclicin XIN-1, from Bacillus sp. Xin1. Food Control, 2021, 121:107696.
    [16] Pandey N, Malik RK, Kaushik JK, Singroha G. Gassericin A:a circular bacteriocin produced by lactic acid bacteria Lactobacillus gasseri. World Journal of Microbiology& Biotechnology, 2013, 29(11):1977-1987.
    [17] Acedo JZ, Van Belkum MJ, Lohans CT, McKay RT, Miskolzie M, Vederas JC. Solution structure of acidocin B, a circular bacteriocin produced by Lactobacillus acidophilus M46. Applied and Environmental Microbiology, 2015, 81(8):2910-2918.
    [18] Borrero J, Kelly E, O'Connor PM, Kelleher P, Scully C, Cotter PD, Mahony J, Van Sinderen D. Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326:purification, characterization, and heterologous production. Applied and Environmental Microbiology, 2018, 84(1):e01801-e01817.
    [19] Golneshin A, Gor MC, Williamson N, Vezina B, Van TTH, May BK, Smith AT. Discovery and characterisation of circular bacteriocin plantacyclin B21AG from Lactiplantibacillus plantarum B21. Heliyon, 2020, 6(8):e04715.
    [20] Gabrielsen C, Brede DA, Nes IF, Diep DB. Circular bacteriocins:biosynthesis and mode of action. Applied and Environmental Microbiology, 2014, 80(22):6854-6862.
    [21] Vezina B, Rehm BHA, Smith AT. Bioinformatic prospecting and phylogenetic analysis reveals 94 undescribed circular bacteriocins and key motifs. BMC Microbiology, 2020, 20(1):77.
    [22] González C, Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. PNAS, 2000, 97(21):11221-11226.
    [23] Perez RH, Sugino H, Ishibashi N, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K. Mutations near the cleavage site of enterocin NKR-5-3B prepeptide reveal new insights into its biosynthesis. Microbiology (Reading), 2017, 163(4):431-441.
    [24] Perez RH, Zendo T, Sonomoto K. Circular and leaderless bacteriocins:biosynthesis, mode of action, applications, and prospects. Frontiers in Microbiology, 2018, 9:2085.
    [25] Sánchez-Barrena MJ, Martı́nez-Ripoll M, Gálvez A, Valdivia E, Maqueda M, Cruz V, Albert A. Structure of bacteriocin AS-48:from soluble state to membrane bound state. Journal of Molecular Biology, 2003, 334(3):541-549.
    [26] Zheng S, Sonomoto K. Diversified transporters and pathways for bacteriocin secretion in Gram-positive bacteria. Applied Microbiology and Biotechnology, 2018, 102(10):4243-4253.
    [27] Van Belkum MJ, Martin-Visscher LA, Vederas JC. Structure and genetics of circular bacteriocins. Trends in Microbiology, 2011, 19(8):411-418.
    [28] Mu FQ, Masuda Y, Zendo T, Ono H, Kitagawa H, Ito H, Nakayama J, Sonomoto K. Biological function of a DUF95 superfamily protein involved in the biosynthesis of a circular bacteriocin, leucocyclicin Q. Journal of Bioscience and Bioengineering, 2014, 117(2):158-164.
    [29] Cebrián R, Maqueda M, Neira JL, Valdivia E, Martínez-Bueno M, Montalbán-López M. Insights into the functionality of the putative residues involved in enterocin AS-48 maturation. Applied and Environmental Microbiology, 2010, 76(21):7268-7276.
    [30] Toplak A, Nuijens T, Quaedflieg PJLM, Wu B, Janssen DB. Peptiligase, an enzyme for efficient chemoenzymatic peptide synthesis and cyclization in water. Advanced Synthesis& Catalysis, 2016, 358(13):2140-2147.
    [31] 张军,王祺,汤伟,刘国瑞,许向阳,何增国.细菌素对产生菌获得生存优势及其诱导合成条件的研究进展.微生物学通报, 2020, 47(3):923-932.Zhang J, Wang Q, Tang W, Liu GR, Xu XY, He ZG. Bacteriocinogeny, the way to acquire survival advantages through biosynthetic regulation:a review. Microbiology China, 2020, 47(3):923-932.(in Chinese)
    [32] Cebrián R, Martínez-Bueno M, Valdivia E, Albert A, Maqueda M, Sánchez-Barrena MJ. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity. Journal of Structural Biology, 2015, 190(2):162-172.
    [33] Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, Tateno Y, Itoh T, Saito T. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Applied and Environmental Microbiology, 2004, 70(5):2906-2911.
    [34] Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A. Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiology, 2012, 30(1):51-58.
    [35] Velázquez-Suárez C, Cebrián R, Gasca-Capote C, Sorlózano-Puerto A, Gutiérrez-Fernández J, Martínez-Bueno M, Maqueda M, Valdivia E. Antimicrobial activity of the circular bacteriocin AS-48 against clinical multidrug-resistant Staphylococcus aureus. Antibiotics:Basel, Switzerland, 2021, 10(8):925.
    [36] Himeno K, Rosengren KJ, Inoue T, Perez RH, Colgrave ML, Lee HS, Chan LY, Henriques ST, Fujita K, Ishibashi N, Zendo T, Wilaipun P, Nakayama J, Leelawatcharamas V, Jikuya H, Craik DJ, Sonomoto K. Identification, characterization, and three-dimensional structure of the novel circular bacteriocin, enterocin NKR-5-3B, from Enterococcus faecium. Biochemistry, 2015, 54(31):4863-4876.
    [37] Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M, Rosales MJ, Sánchez-Moreno M, Valdivia E, Martínez-Bueno M, Marín C, Gálvez J, Maqueda M. Preclinical studies of toxicity and safety of the AS-48 bacteriocin. Journal of Advanced Research, 2019, 20:129-139.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Jun, TANG Wei, SUN Xiaowen, LIU Xiaokun, HE Zengguo. Research progress of circular bacteriocin. [J]. Acta Microbiologica Sinica, 2022, 62(7): 2498-2508

Copy
Share
Article Metrics
  • Abstract:410
  • PDF: 1036
  • HTML: 2148
  • Cited by: 0
History
  • Received:November 21,2021
  • Revised:January 07,2022
  • Online: July 06,2022
  • Published: July 04,2022
Article QR Code