Asymbiotic nitrogen-fixing bacteria and their nitrogen fixation potential
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [107]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Biological nitrogen fixation is an important N source to ecosystems, and nitrogen-fixing microorganisms play important roles in plant growth and development. Compared with symbiotic nitrogen-fixing microorganisms, asymbiotic nitrogen-fixing microorganisms are more widely distributed and more diverse, and they are of significance to the nitrogen cycle in the global ecosystem. In this review, the classification, phylogeny and community assembly of asymbiotic nitrogen-fixing bacteria were summarized. We compared the differences of asymbiotic nitrogen-fixing bacterial compositions and their nitrogen-fixing potential in different ecosystems (such as grassland, forest, ocean, farmland, etc.) and different parts of plants (such as canopy, phyllosphere, rhizosphere, endosphere, litter, etc.). The main factors affecting the community structure and nitrogen-fixing potential of asymbiotic nitrogen-fixing bacteria include climatic factors, soil properties and artificial measures. The frequently-used methods for studying asymbiotic nitrogen-fixing bacteria and their nitrogen-fixing potential were also summarized.

    Reference
    [1] 孙锡斌,张青山,肖孔操,李德军.桂西北喀斯特山区非共生固氮速率随退耕后生态演替变化特征.农业现代化研究, 2020, 41(4):709-717. Sun XB, Zhang QS, Xiao KC, Li DJ. Variation of asymbiotic nitrogen fixation with post-agricultural succession in a Karst region of Northwest Guangxi. Research of Agricultural Modernization, 2020, 41(4):709-717.(in Chinese)
    [2] Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation:a contemporary perspective. Annual Review of Ecology, Evolution and Systematics, 2011, 42:489-512.
    [3] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5):263-276.
    [4] Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience, 2012, 5(7):459-62.
    [5] 徐鹏霞,韩丽丽,贺纪正,罗锋,张丽梅.非共生生物固氮微生物分子生态学研究进展.应用生态学报, 2017, 28(10):3440-3450. Xu PX, Han LL, He JZ, Luo F, Zhang LM. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes. Chinese Journal of Applied Ecology, 2017, 28(10):3440-3450.(in Chinese)
    [6] Bellenger JP, Darnajoux R, Zhang X, Kraepiel AML. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems:a review. Biogeochemistry, 2020, 149(1):53-73.
    [7] Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI. Towards an ecological understanding of biological nitrogen fixation. The Nitrogen Cycle at Regional to Global Scales. Dordrecht:Springer Netherlands, 2002:1-45.
    [8] Bottomley PJ, Myearold DD. Chapter 15-Biological N Inputs//Paul EA. Soil Microbiology, Ecology and Biochemistry (Fourth Edition). Boston:Academic Press, 2015.
    [9] 张武,杨琳,王紫娟.生物固氮的研究进展及发展趋势.云南农业大学学报:自然科学, 2015, 30(5):810-821. Zhang W, Yang L, Wang ZJ. Advance and development trend of biological nitrogen fixation research. Journal of Yunnan Agricultural University:Natural Science, 2015, 30(5):810-821.(in Chinese)
    [10] Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Annals of Botany, 2013, 111(5):743-767.
    [11] 周芳,方仙桃,高宏.固氮蓝藻的异形胞研究进展.安徽农业科学, 2013, 41(2):524-527. Zhou F, Fang XT, Gao H. Advances on the heterocysts of the nitrogen-fixingCyanobacteria. Journal of Anhui Agricultural Sciences, 2013, 41(2):524-527.(in Chinese)
    [12] 韩佳悯.化能自养细菌Halothiobacillus sp. LS2硫氧化和固氮作用的研究.华南理工大学硕士学位论文, 2019.
    [13] Baldani J, Caruso L, Baldani VLD, Goi SR, Döbereiner J. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, 1997, 29(5/6):911-922.
    [14] 林丽,李杨瑞,安千里.甘蔗联合固氮的回顾与展望.生物技术通报, 2019, 35(10):46-56. Lin L, Li YR, An QL. Biological nitrogen fixation in association with sugarcane:retrospect and prospect. Biotechnology Bulletin, 2019, 35(10):46-56.(in Chinese)
    [15] 荆晓姝,丁燕,韩晓梅,王哲,高德艳.联合固氮菌的合成生物学研究进展.微生物学报, 2021, 61(10):3026-3034. Jing XS, Ding Y, Han XM, Wang Z, Gao DY. Advances in synthetic biology of associated nitrogen-fixation bacteria. Acta Microbiologica Sinica, 2021, 61(10):3026-3034.(in Chinese)
    [16] Van Deynze A, Zamora P, Delaux PM, Heitmann C, Jayaraman D, Rajasekar S, Graham D, Maeda J, Gibson D, Schwartz KD, Berry AM, Bhatnagar S, Jospin G, Darling A, Jeannotte R, Lopez J, Weimer BC, Eisen JA, Shapiro HY, Ané JM, Bennett AB. Nitrogen fixation in a Landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16(8):e2006352.
    [17] Bennett AB, Pankievicz VCS, Ané JM. A model for nitrogen fixation in cereal crops. Trends in Plant Science, 2020, 25(3):226-235.
    [18] Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics, 2012, 13:162.
    [19] Addo MA, Dos Santos PC. Distribution of nitrogen-fixation genes in prokaryotes containing alternative nitrogenases. ChemBioChem, 2020, 21(12):1749-1759.
    [20] Harwood CS. Iron-only and vanadium nitrogenases:fail-safe enzymes or something more?Annual Review of Microbiology, 2020, 74:247-266.
    [21] Hamelin J, Fromin N, Tarnawski S, Teyssier-Cuvelle S, Aragno M. NifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass. Environmental Microbiology, 2002, 4(8):477-481.
    [22] Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané JM, Voigt CA. Control of nitrogen fixation in bacteria that associate with cereals. Nature Microbiology, 2020, 5(2):314-330.
    [23] Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Molecular Biology and Evolution, 2004, 21(3):541-554.
    [24] Harris DF, Lukoyanov DA, Kallas H, Trncik C, Yang ZY, Compton P, Kelleher N, Einsle O, Dean DR, Hoffman BM, Seefeldt LC. Mo-, V-, and Fe-nitrogenases use a universal eight-electron reductive-elimination mechanism to achieve N2 reduction. Biochemistry, 2019, 58(30):3293-3301.
    [25] Gravel D, Canham CD, Beaudet M, Messier C. Reconciling niche and neutrality:the continuum hypothesis. Ecology Letters, 2006, 9(4):399-409.
    [26] Zhou JZ, Ning DL. Stochastic community assembly:does it matter in microbial ecology?Microbiology and Molecular Biology Reviews, 2017, 81(4):e00002-17.
    [27] 柴永福,岳明.植物群落构建机制研究进展.生态学报, 2016, 36(15):4557-4572. Chai YF, Yue M. Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 2016, 36(15):4557-4572.(in Chinese)
    [28] Prado VHM, Rossa-Feres DCC. The influence of niche and neutral processes on a neotropical anuran metacommunity. Austral Ecology, 2014, 39(5):540-547.
    [29] Wang YS, Li CN, Kou YP, Wang JJ, Tu B, Li H, Li XZ, Wang CT, Yao MJ. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biology and Biochemistry, 2017, 115:547-555.
    [30] Wang YS, Kou YP, Li CN, Tu B, Wang JM, Yao MJ, Li XZ. Contrasting responses of diazotrophic specialists, opportunists, and generalists to steppe types in Inner Mongolia. CATENA, 2019, 182:104168.
    [31] Fan KK, Weisenhorn P, Gilbert JA, Shi Y, Bai Y, Chu HY. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biology and Biochemistry, 2018, 121:185-192.
    [32] Wang YS, Li CN, Tu B, Kou YP, Li XZ. Species pool and local ecological assembly processes shape the β-diversity of diazotrophs in grassland soils. Soil Biology and Biochemistry, 2021, 160:108338.
    [33] Wang YS, Li CN, Shen ZH, Rui JP, Jin DC, Li JB, Li XZ. Community assemblage of free-living diazotrophs along the elevational gradient of Mount Gongga. Soil Ecology Letters, 2019, 1(3/4):136-146.
    [34] 文都日乐,李刚,杨殿林,张静妮,易津.呼伦贝尔草原土壤固氮微生物nifH基因多样性与群落结构.生态学杂志, 2011, 30(4):790-797. Wendurile, Li G, Yang DL, Zhang JN, Yi J. NifH gene diversity and community structure of soil nitrogen-fixing bacteria in Hulunbeier grassland Inner Mongolia. Chinese Journal of Ecology, 2011, 30(4):790-797.(in Chinese)
    [35] 刘华杰.内蒙古草原中生物土壤结皮的生态学研究.中国科学院植物研究所博士后论文, 2007.
    [36] Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. The ISME Journal, 2008, 2(5):561-570.
    [37] Cusack DF, Silver W, McDowell WH. Biological nitrogen fixation in two tropical forests:ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems, 2009, 12(8):1299-1315.
    [38] Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP. Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 2007, 445(7124):163-167.
    [39] Zehr JP, Capone DG. Changing perspectives in marine nitrogen fixation. Science, 2020, 368(6492):eaay9514.
    [40] Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, van Kessel C, de B Richter D, Chakraborty D, Pathak H. Global nitrogen budgets in cereals:a 50-year assessment for maize, rice and wheat production systems. Scientific Reports, 2016, 6:19355.
    [41] Vijayan D, Ray JG. Ecology and diversity of Cyanobacteria in Kuttanadu paddy wetlands, Kerala, India. American Journal of Plant Sciences, 2015, 6(18):2924-2938.
    [42] 孙建光,徐晶,胡海燕,张燕春,刘君,王文博,孙燕华.中国十三省市土壤中非共生固氮微生物菌种资源研究.植物营养与肥料学报, 2009, 15(6):1450-1465. Sun JG, Xu J, Hu HY, Zhang YC, Liu J, Wang WB, Sun YH. Collection and investigation on asymbiotic nitrogen-fixing microbial resources from 13 provinces over China. Journal of Plant Nutrition and Fertilizer, 2009, 15(6):1450-1465.(in Chinese)
    [43] Liu HW, Zhang L, Meng AH, Zhang JB, Xie MM, Qin YH, Faulk DC, Zhang BH, Yang SS, Qiu L. Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops. PLoS One, 2017, 12(10):e0187383.
    [44] Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B. Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. Journal of Applied Microbiology, 2021, 131(2):898-912.
    [45] Zhang J, Zheng MH, Zhang YJ, Wang J, Shen H, Lin YB, Tang XL, Hui DF, Lambers H, Sardans J, Peñuelas J, Liu ZF. Soil phosphorus availability affects diazotroph communities during vegetation succession in lowland subtropical forests. Applied Soil Ecology, 2021, 166:104009.
    [46] Urbanová M,Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84:53-64.
    [47] Van Langenhove L, Depaepe T, Verryckt LT, Fuchslueger L, Donald J, Leroy C, Krishna Moorthy SM, Gargallo-Garriga A, Ellwood MDF, Verbeeck H, Van Der Straeten D, Peñuelas J, Janssens IA. Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. Science of the Total Environment, 2021, 754:142202.
    [48] Sheng R, Li K, Zhang WZ, Wang H, Liu HL, Zhu XY, Wu HX, Zhang XQ, Lin QM, Sun XC, Tang YF, A L, Wei WX. Differentiations of determinants for the community compositions of bacteria, fungi, and nitrogen fixers in various steppes. Ecology and Evolution, 2019, 9(6):3239-3250.
    [49] Zhao WQ, Kou YP, Wang XH, Wu YH, Bing HJ, Liu Q. Broad-scale distribution of diazotrophic communities is driven more by aridity index and temperature than by soil properties across various forests. Global Ecology and Biogeography, 2020, 29(12):2119-2130.
    [50] Gupta VVSR, Roper MM, Roget DK. Potential for non-symbiotic N2-fixation in different agroecological zones of southern Australia. Soil Research, 2006, 44(4):343-354.
    [51] Reed SC, Cleveland CC, Townsend AR. Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica, 2007, 39(5):585-592.
    [52] 冯帅.固氮施氏假单胞菌A1501-玉米根际联合固氮作用及其微生物群落分析.西南科技大学硕士学位论文, 2017.
    [53] Rui JP, Li JB, Wang SP, An JX, Liu WT, Lin QY, Yang YF, He ZL, Li XZ. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet plateau. Applied and Environmental Microbiology, 2015, 81(17):6070-6077.
    [54] Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ, Kostka JE, Iversen CM, Hanson PJ, Weston DJ. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology, 2019, 25(9):2993-3004.
    [55] 张鹏,李新荣,贾荣亮,胡宜刚,黄磊.沙坡头地区生物土壤结皮的固氮活性及其对水热因子的响应.植物生态学报, 2011, 35(9):906-913. Zhang P, Li XR, Jia RL, Hu YG, Huang L. Nitrogenase activity of biological soil crusts and its response to hydrothermic factors in the Shapotou region of Northern China. Chinese Journal of Plant Ecology, 2011, 35(9):906-913.(in Chinese)
    [56] Rousk K, Pedersen PA, Dyearnum K, Michelsen A. The interactive effects of temperature and moisture on nitrogen fixation in two temperate-Arctic mosses. Theoretical and Experimental Plant Physiology, 2017, 29(1):25-36.
    [57] Gundale MJ, Nilsson M, Bansal S, Jäderlund A. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytologist, 2012, 194(2):453-463.
    [58] Li DJ, Zhang QS, Xiao KC, Wang ZC, Wang KL. Divergent responses of biological nitrogen fixation in soil, litter and moss to temperature and moisture in a Karst forest, southwest China. Soil Biology and Biochemistry, 2018, 118:1-7.
    [59] Han LL, Wang Q, Shen JP, Di HJ, Wang JT, Wei WX, Fang YT, Zhang LM, He JZ. Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China. FEMS Microbiology Ecology, 2019, 95(8):fiz113.
    [60] Lin YX, Ye GP, Liu DY, Ledgard S, Luo JF, Fan JB, Yuan JJ, Chen ZM, Ding WX. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biology and Biochemistry, 2018, 123:218-228.
    [61] Wang C, Zheng MM, Song WF, Wen SL, Wang BR, Zhu CQ, Shen RF. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in Southern China. Soil Biology and Biochemistry, 2017, 113:240-249.
    [62] Wu CF, Wei XM, Hu ZY, Liu Y, Hu YJ, Qin HL, Chen XB, Wu JS, Ge TD, Zhran M, Su YR. Diazotrophic community variation underlies differences in nitrogen fixation potential in paddy soils across a climatic gradient in China. Microbial Ecology, 2021, 81(2):425-436.
    [63] Tang YQ, Tian J, Li XZ, Yao MJ, Wang SQ, Kuzyakov Y, Dungait JAJ. Higher free-living N2 fixation at rock-soil interfaces than topsoils during vegetation recovery in Karst soils. Soil Biology and Biochemistry, 2021, 159:108286.
    [64] Winbourne JB, Brewer SW, Houlton BZ. Iron controls over di-nitrogen fixation in Karst tropical forest. Ecology, 2017, 98(3):773-781.
    [65] Van Langenhove L, Depaepe T, Vicca S, van den Berge J, Stahl C, Courtois E, Weedon J, Urbina I, Grau O, Asensio D, Peñuelas J, Boeckx P, Richter A, van der Straeten D, Janssens IA. Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield. Plant and Soil, 2020, 450(1):93-110.
    [66] Wang Q, Wang JL, Li YZ, Chen DW, Ao JH, Zhou WL, Shen DC, Li QW, Huang ZR, Jiang Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Science of the Total Environment, 2018, 619/620:1530-1537.
    [67] Tang YQ, Yu GR, Zhang XY, Wang QF, Tian J, Niu SL, Tian DS, Ge JP. Different strategies for regulating free-living N2 fixation in nutrient-amended subtropical and temperate forest soils. Applied Soil Ecology, 2019, 136:21-29.
    [68] Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience, 2009, 2(1):42-45.
    [69] Dynarski KA, Houlton BZ. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytologist, 2018, 217(3):1050-1061.
    [70] Chakraborty A, Bhakat K, Islam E. Arsenic contamination in agricultural soil reduces metabolic activity of total and free-living nitrogen-fixing bacteria as revealed by real-time qPCR. Soil and Sediment Contamination:an International Journal, 2017, 26(7/8):736-748.
    [71] Shi W, Zhao HY, Chen Y, Wang JS, Han B, Li CP, Lu JY, Zhang LM. Organic manure rather than phosphorus fertilization primarily determined asymbiotic nitrogen fixation rate and the stability of diazotrophic community in an upland red soil. Agriculture, Ecosystems& Environment, 2021, 319:107535.
    [72] Liao HK, Li YY, Yao HY. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. Journal of Soils and Sediments, 2018, 18(3):1076-1086.
    [73] Xu YD, Zhang W, Zhong ZK, Guo SJ, Han XH, Yang GH, Ren CJ, Chen ZX, Dai YY, Qiao WJ. Vegetation restoration alters the diversity and community composition of soil nitrogen-fixing microorganisms in the loess hilly region of China. Soil Science Society of America Journal, 2019, 83(5):1378-1386.
    [74] Eaton WD, McGee KM, Larimer M, Hoke E, Karas O, Hernandez B, Wayland NA. Changes in soil bacterial communities, and carbon and nitrogen metrics as potential indicators of land use effects in a humid tropical forest. Pedobiologia, 2021, 85/86:150730.
    [75] Mirza BS, Potisap C, Nüsslein K, Bohannan BJM, Rodrigues JLM. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest. Applied and Environmental Microbiology, 2014, 80(1):281-288.
    [76] Shiozaki T, Chen YLL, Lin YH, Taniuchi Y, Sheu DS, Furuya K, Chen HY. Seasonal variations of unicellular diazotroph groups A and B, and Trichodesmium in the northern South China Sea and neighboring upstream Kuroshio Current. Continental Shelf Research, 2014, 80:20-31.
    [77] Gaby JC, Buckley DH. The use of degenerate primers in qPCR analysis of functional genes can cause dramatic quantification bias as revealed by investigation of nifH primer performance. Microbial Ecology, 2017, 74(3):701-708.
    [78] Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One, 2012, 7(7):e42149.
    [79] Wang Q, Quensen JF 3rd, Fish JA, Lee TK, Sun YN, Tiedje JM, Cole JR. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio, 2013, 4(5):e00592-e00513.
    [80] 刘驰,李家宝,芮俊鹏,安家兴,李香真. 16S rRNA基因在微生物生态学中的应用.生态学报, 2015, 35(9):2769-2788. Liu C, Li JB, Rui JP, An JX, Li XZ. The applications of the 16S rRNA gene in microbial ecology:current situation and problems. Acta Ecologica Sinica, 2015, 35(9):2769-2788.(in Chinese)
    [81] Liu C, Cui YM, Li XZ, Yao MJ. Microeco:an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 2020, 97(2):fiaa255.
    [82] Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science, 2016, 353(6305):1272-1277.
    [83] Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 2001, 152(1):95-103.
    [84] Marusina AI, Boulygina ES, Kuznetsov BB, Tourova TP, Kravchenko IK, Gal'chenko VF. A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Microbiology, 2001, 70(1):73-78.
    [85] Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, Yoneyama T. Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus[L.]Merr.). Soil Science and Plant Nutrition, 2005, 51(2):303-308.
    [86] Rösch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Applied and Environmental Microbiology, 2002, 68(8):3818-3829.
    [87] Zehr JP, McReynolds LA. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology, 1989, 55(10):2522-2526.
    [88] Zani S, Mellon MT, Collier JL, Zehr JP. Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Applied and Environmental Microbiology, 2000, 66(7):3119-3124.
    [89] Ueda T, Suga Y, Yahiro N, Matsuguchi T. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. Journal of Bacteriology, 1995, 177(5):1414-1417.
    [90] 谢祖彬,张燕辉,王慧.稻田生物固氮研究进展及方向.土壤学报, 2020, 57(3):540-546. Xie ZB, Zhang YH, Wang H. Advances and perspectives in paddy biological nitrogen fixation. Acta Pedologica Sinica, 2020, 57(3):540-546.(in Chinese)
    [91] Tang YF, Zhang MM, Chen AL, Zhang WZ, Wei WX, Sheng R. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems& Environment, 2017, 247:1-8.
    [92] Zhao JW, Tao Q, Li B, Luo JP, Zhang HY, Lu CL, Li QQ, Xu Q, Huang R, Li HX, Li B, Chen YL, Wang CQ. Low-pyrolysis-temperature biochar promoted free-living N2-fixation in calcareous purple soil by affecting diazotrophic composition. Geoderma, 2021, 388:114969.
    [93] Saiz E, Sgouridis F, Drijfhout FP, Ullah S. Biological nitrogen fixation in peatlands:comparison between acetylene reduction assay and 15N2 assimilation methods. Soil Biology and Biochemistry, 2019, 131:157-165.
    [94] Bytnerowicz TA, Min E, Griffin KL, Menge DNL. Repeatable, continuous and real-time estimates of coupled nitrogenase activity and carbon exchange at the whole-plant scale. Methods in Ecology and Evolution, 2019, 10(7):960-970.
    [95] 李香真,陈清. 15N同位素稀释法测定生物固氮量.核农学通报, 1997, 18(6):42-44. Li XZ, Chen Q. 15N isotopic dilution method to determine the biological nitrogen fixation. He Nong Xue Tong Bao, 1997, 18(6):42-44.(in Chinese)
    [96] 农倩,林丽,谢金兰,莫璋红,黄杏,李长宁.一株高效甘蔗内生固氮细菌GXS16的鉴定及其对甘蔗的促生长作用.微生物学通报, 2021, 48(12):4710-4718. Nong Q, Lin L, Xie JL, Mo ZH, Huang X, Li CN. Characters identification and sugarcane growth promotion analysis of an endophytic nitrogen fixing bacteria GXS16. Microbiology China, 2021, 48(12):4710-4718.(in Chinese)
    [97] 马春梅,王晶,夏玄,王畅,吕晓晨,李莎,程娟,龚振平.基于15N示踪法的双根大豆系统氮素吸收和分配特性研究.植物营养与肥料学报, 2019, 25(11):1909-1919. Ma CM, Wang J, Xia X, Wang C, Lyu XC, Li S, Cheng J, Gong ZP. Study on absorption and distribution characteristics of nitrogen in soybeans with dual root systems based on 15N tracing technique. Journal of Plant Nutrition and Fertilizers, 2019, 25(11):1909-1919.(in Chinese)
    [98] Chalk PM. The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis, 2016, 69(2):63-80.
    [99] 杨子文.应用15N自然丰度技术量化陇东苜蓿生物固氮的研究.兰州大学硕士学位论文, 2010.
    [100] Conrad KA, Dalal RC, Dalzell SA, Allen DE, Fujinuma R, Menzies NW. Soil nitrogen status and turnover in subtropical Leucaena-grass pastures as quantified by δ15N natural abundance. Geoderma, 2018, 313:126-134.
    [101] Chalk PM, Inácio CT, Chen DL. An overview of contemporary advances in the usage of 15N natural abundance (δ15N) as a tracer of agro-ecosystem N cycle processes that impact the environment. Agriculture, Ecosystems& Environment, 2019, 283:106570.
    [102] Russow R, Veste M, Böhme F. A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev Desert. Rapid Communications in Mass Spectrometry, 2005, 19(23):3451-3456.
    [103] 陈朝勋,席琳乔,姚拓,张虎,张德罡.生物固氮测定方法研究进展.草原与草坪, 2005, 25(2):24-26. Chen (C/Z) X, Xi LQ, Yao T, Zhang H, Zhang DG. Research progress of biological nitrogen fixation methods. Grassland and Turf, 2005, 25(2):24-26.(in Chinese)
    [104] Xu R, Prentice IC. Modelling the demand for new nitrogen fixation by terrestrial ecosystems. Biogeosciences, 2017, 14(7):2003-2017.
    [105] Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 2008, 311(1/2):1-18.
    [106] Staccone A, Liao WY, Perakis S, Compton J, Clark CM, Menge DC. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Global Biogeochemical Cycles, 2020, 34(2):e2019GB006241.
    [107] Soper FM, Taylor BN, Winbourne JB, Wong MY, Dynarski KA, Reis CRG, Peoples MB, Cleveland CC, Reed SC, Menge DNL, Perakis SS. A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods in Ecology and Evolution, 2021, 12(6):1122-1137.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Jialong, LIU Chi, LEI Li, LI Xiangzhen, YAO Minjie. Asymbiotic nitrogen-fixing bacteria and their nitrogen fixation potential. [J]. Acta Microbiologica Sinica, 2022, 62(8): 2861-2878

Copy
Share
Article Metrics
  • Abstract:800
  • PDF: 2630
  • HTML: 1674
  • Cited by: 0
History
  • Received:November 14,2021
  • Revised:January 27,2022
  • Online: August 16,2022
Article QR Code