High antibacterial activity of lactic acid bacteria against food-borne pathogens
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [58]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Food-borne pathogens threaten human life and health and antibiotics are the most effective choice at the moment.However,the irregular use of antibiotics has led to the rising prevalence of drug-resistant bacteria.Lactic acid bacteria are recognized as safe food-grade microorganisms.They boast good application prospects attributing to the functions of antagonizing pathogenic bacteria,improving immune regulation,strengthening intestinal barrier,and balancing intestinal microbiota.They are expected to become the next generation of safe,stable,and economical biological antibacterials to reduce or even replace antibiotics.This article describes the antibacterial substances,antibacterial mechanisms,and antibacterial functional properties of lactic acid bacteria to promote the research on and application of them.

    Reference
    [1] Pires SM, Desta BN, Mughini-Gras L, Mmbaga BT, Fayemi OE, Salvador EM, Gobena T, Majowicz SE, Hald T, Hoejskov PS, Minato Y, Devleesschauwer B. Burden of foodborne diseases:think global, act local. Current Opinion in Food Science, 2021, 39:152‒159.
    [2] Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Dopfer D, Fazil A, Fischer-Walker CL, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF, Torgerson PR, Havelaar AH, Angulo FJ. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010:a data synthesis. PLoS Medicine, 2015, 12(12):e1001921.
    [3] Neal-Mckinney JM, Lu X, Duong T, Larson CL, Call DR, Shah DH, Konkel ME. Production of organic acids by probiotic Lactobacilli can be used to reduce pathogen load in poultry. PLoS One, 2012, 7(9):e43928.
    [4] 李超,王春凤,杨桂连.乳酸菌胞外多糖肠道黏附及免疫调节作用研究进展.食品科学, 2014, 35(11):314‒318. Li C, Wang CF, Yang GL. Progress in intestinal adhension and immunoregulatory effect of extracellular polysaccharides of lactic acid bacteria. Food Science, 2014, 35(11):314‒318.(in Chinese)
    [5] 崔磊,郭伟国.乳酸菌产生的抑菌物质及其作用机制.食品安全质量检测学报, 2018, 9(11):2578‒2584. Cui L, Guo WG. Antibacterial substances produced by lactic acid bacteria and their mechanism. Journal of Food Safety& Quality, 2018, 9(11):2578‒2584.(in Chinese)
    [6] Cotter PD, Hill C, Ross RP. Bacteriocins:developing innate immunity for food. Nature Reviews Microbiology, 2005, 3(10):777‒788.
    [7] Van Zyl WF, Deane SM, Dicks LMT. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes, 2020, 12(1):1831339.
    [8] Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V. Probiotics and its functionally valuable products—a review. Critical Reviews in Food Science and Nutrition, 2013, 53(6):641‒658.
    [9] Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 1993, 12(1/2/3):39‒85.
    [10] Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives:challenges and emerging horizons. Critical Reviews in Food Science and Nutrition, 2018, 58(16):2743‒2767.
    [11] Rogers LA, Whittier EO. Limiting factors in the lactic fermentation. Journal of Bacteriology, 1928, 16(4):211‒229.
    [12] Mani-Lopez E, Garcia HS, Lopez-Malo A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 2012, 45(2):713‒721.
    [13] Reis JA, Paula AT, Casarotti SN, Penna ALB. Lactic acid bacteria antimicrobial compounds:characteristics and applications. Food Engineering Reviews, 2012, 4(2):124‒140.
    [14] Ozcelik S, Kuley E, Ozogul F. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT-Food Science and Technology, 2016, 73:536‒542.
    [15] Rajanikar RV, Nataraj BH, Naithani H, Ali SA, Panjagari NR, Behare PV. Phenyllactic acid:a green compound for food biopreservation. Food Control, 2021, 128:108184.
    [16] 何艳霞,王凤,杨文丹,陈佳芳,徐岩,黄卫宁,小川晃弘.传统酸面团中抗霉菌乳酸菌的筛选及其在蒸蛋糕中的应用.食品工业科技, 2017, 38(19):88‒95. He YX, Wang F, Yang WD, Chen JF, Xu Y, Huang WN, Akihiro O. Screening of antifungal lactic acid bacteria from traditional sourdough and its application in the steamed cake. Science and Technology of Food Industry, 2017, 38(19):88‒95.(in Chinese)
    [17] De Sousa MA, Rama GR, Volken De Souza CF, Granada CE. Acid lactic lactobacilli as a biotechnological toll to improve food quality and human health. Biotechnology Progress, 2020, 36(2):e2937.
    [18] Dittoe DK, Ricke SC, Kiess AS. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Frontiers in Veterinary Science, 2018, 5:216.
    [19] Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology, 2013, 11(2):95‒105.
    [20] Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cellular and Molecular Life Sciences, 2008, 65(3):455‒476.
    [21] Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, Snipen L, Hernández PE, Nes IF, Diep DB. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology:Reading, England, 2011, 157(Pt 12):3256‒3267.
    [22] Gabrielsen C, Brede DA, Hernández PE, Nes IF, Diep DB. The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrobial Agents and Chemotherapy, 2012, 56(6):2908‒2915.
    [23] Cintas LM, Casaus MP, Herranz C, Nes IF, Hernandez P E. Review:bacteriocins of lactic acid bacteria. Food Science and Technology International, 2001, 7(4):281‒305.
    [24] Wan MLY, Forsythe SJ, El-Nezami H. Probiotics interaction with foodborne pathogens:a potential alternative to antibiotics and future challenges. Critical Reviews in Food Science and Nutrition, 2019, 59(20):3320‒3333.
    [25] Khaneghah AM, Abhari K, Es I, Soares MB, Oliveira RBA, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant՚ana AS. Interactions between probiotics and pathogenic microorganisms in hosts and foods:a review. Trends in Food Science& Technology, 2020, 95:205‒218.
    [26] Lee YK, Puong KY. Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. The British Journal of Nutrition, 2002, 88(Suppl 1):S101‒S108.
    [27] Oelschlaeger TA. Mechanisms of probiotic actions:a review. International Journal of Medical Microbiology, 2010, 300(1):57‒62.
    [28] Lee SH. Intestinal permeability regulation by tight junction:implication on inflammatory bowel diseases. Intestinal Research, 2015, 13(1):11‒18.
    [29] Johansson MEV, Hansson GC. Keeping bacteria at a distance. Science, 2011, 334(6053):182‒183.
    [30] Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M. Mucins and mucosal protection in the gastrointestinal tract:new prospects for mucins in the pathology of gastrointestinal disease. Gut, 2000, 47(4):589‒594.
    [31] La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system:indirect regulation. Probiotics and Antimicrobial Proteins, 2018, 10(1):11‒21.
    [32] Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2010, 298(6):G807-819.
    [33] Yi HB, Hu WY, Chen S, Lu ZQ, Wang YZ. Cathelicidin-WA improves intestinal epithelial barrier function and enhances host defense against enterohemorrhagic Escherichia coli O157:H7 infection. Journal of Immunology, 2017, 198(4):1696‒1705.
    [34] Li H, Xie X, Li Y, Chen M, Xue L, Wang J, Zhang J, Wu S, Ye Q, Zhang S, Yang R, Zhao H, Wu L, Liang T, Ding Y, Wu Q. Pediococcus pentosaceus IM96 exerts protective effects against enterohemorrhagic Escherichia coli O157:H7 infection in vivo. Foods, 2021, 10(12):2945.
    [35] Caballero-Franco C, Keller K, De Simone C, Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007, 292(1):G315-322.
    [36] Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Looijer-Van Langen M, Madsen KL. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. American Journal of Physiology Gastrointestinal and Liver Physiology, 2008, 295(5):G1025‒G1034.
    [37] Hu J, Chen LL, Zheng WY, Shi M, Liu L, Xie CL, Wang XK, Niu YR, Hou QL, Xu XF, Xu BY, Tang YM, Zhou SY, Yan YQ, Yang T, Ma LB, Yan XH. Lactobacillus frumenti facilitates intestinal epithelial barrier function maintenance in early-weaned piglets. Frontiers in Microbiology, 2018, 9:897.
    [38] Yan F, Polk DB. Probiotics and immune health. Current Opinion in Gastroenterology, 2011, 27(6):496‒501.
    [39] Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G. Beneficial effects of probiotic consumption on the immune system. Annals of Nutrition& Metabolism, 2019, 74(2):115‒124.
    [40] Llewellyn A, Foey A. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients, 2017, 9(10):1156.
    [41] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on toll-like receptors. Nature Immunology, 2010, 11(5):373‒384.
    [42] di Giacinto C, Marinaro M, Sanchez M, Strober W, Boirivant M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. Journal of Immunology, 2005, 174(6):3237‒3246.
    [43] Hutchins AP, Diez D, Miranda-Saavedra D. The IL-10/STAT3-mediated anti-inflammatory response:recent developments and future challenges. Briefings in Functional Genomics, 2013, 12(6):489‒498.
    [44] Corr SC, Gahan CGM, Hill C. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunology& Medical Microbiology, 2007, 50(3):380‒388.
    [45] Yue Y, He ZJ, Zhou YH, Ross RP, Stanton C, Zhao JX, Zhang H, Yang B, Chen W. Lactobacillus plantarum relieves diarrhea caused by enterotoxin-producing Escherichia coli through inflammation modulation and gut microbiota regulation. Food& Function, 2020, 11(12):10362‒10374.
    [46] Wang GQ, Zhang Y, Song X, Xia YJ, Lai PFH, Ai LZ. Lactobacillus casei LC2W can inhibit the colonization of Escherichia coli O157:H7in vivo and reduce the severity of colitis. Food& Function, 2019, 10(9):5843‒5852.
    [47] Ren DY, Gong SJ, Shu JY, Zhu JW, Rong FJ, Zhang ZY, Wang D, Gao LF, Qu TM, Liu HY, Chen P. Mixed Lactobacillus plantarum strains inhibit Staphylococcus aureus induced inflammation and ameliorate intestinal microflora in mice. BioMed Research International, 2017, 2017:7476467.
    [48] Liu J, Gu Z, Zhang H, Zhao J, Chen W. Preventive effects of Lactobacillus plantarum ST-III against Salmonella infection. LWT-Food Science and Technology, 2019, 105:200‒205.
    [49] Campion A, Casey PG, Field D, Cotter PD, Hill C, Ross RP. In vivo activity of nisin A and nisin V against Listeria monocytogenes in mice. Bmc Microbiology, 2013, 13:23.
    [50] Su P, Henriksson A, Mitchell H. Survival and retention of the probiotic Lactobacillus casei LAFTI L26 in the gastrointestinal tract of the mouse. Letters in Applied Microbiology, 2007, 44(2):120‒125.
    [51] Kim SY, Shin S, Koo HC, Youn JH, Paik HD, Park YH. In vitro antimicrobial effect and in vivo preventive and therapeutic effects of partially purified lantibiotic lacticin NK34 against infection by Staphylococcus species isolated from bovine mastitis. Journal of Dairy Science, 2010, 93(8):3610‒3615.
    [52] Wang J, Lu JX, Xie XW, Xiong J, Huang NN, Wei HK, Jiang SW, Peng J. Blend of organic acids and medium chain fatty acids prevents the inflammatory response and intestinal barrier dysfunction in mice challenged with enterohemorrhagic Escherichia coli O157:H7. International Immunopharmacology, 2018, 58:64‒71.
    [53] Małaczewska J, Kaczorek-Łukowska E. Nisin-A lantibiotic with immunomodulatory properties:a review. Peptides, 2021, 137:170479.
    [54] Rodríguez JM, Martínez MI, Kok J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 2002, 42(2):91‒121.
    [55] Aymerich T, Garriga M, Ylla J, Vallier J, Monfort JM, Hugas M. Application of enterocins as biopreservatives against Listeria innocua in meat products. Journal of Food Protection, 2000, 63(6):721‒726.
    [56] 马霞,韩迪,张吉,李亮,毛爱军.乳酸菌在发酵果蔬中的应用.中国乳品工业, 2013, 41(1):40‒42, 64. Ma X, Han D, Zhang J, Li L, Mao AJ. Application of lactic acid bacteria in fermented fruits and vegetables. China Dairy Industry, 2013, 41(1):40‒42, 64.(in Chinese)
    [57] Grande MJ, Lucas R, Valdivia E, Abriouel H, Maqueda M, Omar NB, Martínez-Cañamero M, Gálvezi A. Stability of enterocin AS-48 in fruit and vegetable juices. Journal of Food Protection, 2005, 68(10):2085‒2094.
    [58] O՚Connor PM, Kuniyoshi TM, Oliveira RP, Hill C, Ross RP, Cotter PD. Antimicrobials for food and feed:a bacteriocin perspective. Current Opinion in Biotechnology, 2020, 61:160‒167.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Haixin, KOU Xiuying, XIE Xinqiang, ZHANG Jumei, WU Qingping. High antibacterial activity of lactic acid bacteria against food-borne pathogens. [J]. Acta Microbiologica Sinica, 2022, 62(10): 3732-3740

Copy
Share
Article Metrics
  • Abstract:591
  • PDF: 1066
  • HTML: 1481
  • Cited by: 0
History
  • Received:March 02,2022
  • Revised:March 30,2022
  • Online: September 24,2022
Article QR Code