Advances in host prediction approaches for environmental phages
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [92]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Viruses are the most abundant biological entities on Earth. They play an important role in biogeochemical cycles and the evolution of life by regulating host community structure, causing mortality, and mediating genetic exchange. In recent years, the development of metagenomics has enabled the global-scale study of environmental viruses. A large number of novel viral genomes have been uncovered, and the roles and contributions of viruses in ecological processes and biogeochemical cycles have been recognized. The important role of viruses in ecosystem is mainly dependent on the infecting host. However, host prediction of environmental viruses has lagged far behind the studies of environmental viral genomics. This review aims to provide the latest knowledge of the main approaches for virus-host prediction, their pros and cons, and application, to reveal the importance of host prediction in the ecological research and bioengineering of viruses, and to present an outlook on the future development of host prediction approaches.

    Reference
    [1] Mushegian AR. Are there 1031 virus particles on earth, or more, or fewer? Journal of Bacteriology, 2020, 202(9):e00052-e00020.
    [2] Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends in Microbiology, 2005, 13(6):278-284.
    [3] Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 2004, 28(2):127-181.
    [4] Suttle CA. Marine viruses-major players in the global ecosystem. Nature Reviews Microbiology, 2007, 5(10):801-812.
    [5] Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nature Microbiology, 2018, 3(7):754-766.
    [6] Warwick-Dugdale J, Buchholz HH, Allen MJ, Temperton B. Host-hijacking and planktonic piracy:how phages command the microbial high seas. Virology Journal, 2019, 16(1):15.
    [7] Kuzyakov Y, Mason-Jones K. Viruses in soil:nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biology and Biochemistry, 2018, 127:305-317.
    [8] Paul JH. Microbial gene transfer:an ecological perspective. Journal of Molecular Microbiology and Biotechnology, 1999, 1(1):45-50.
    [9] Zhang R, Wei W, Cai LL. The fate and biogeochemical cycling of viral elements. Nature Reviews Microbiology, 2014, 12(12):850-851.
    [10] Chen XW, Weinbauer MG, Jiao NZ, Zhang R. Revisiting marine lytic and lysogenic virus-host interactions:kill-the-winner and piggyback-the-winner. Science Bulletin, 2021, 66(9):871-874.
    [11] Wilhelm S, Suttle C. Viruses and nutrient cycles in the sea viruses play critical roles in the structure and function of aquatic food webs. BioScience, 1999, 49:781-788.
    [12] Coutinho FH, Gregoracci GB, Walter JM, Thompson CC, Thompson FL. Metagenomics sheds light on the ecology of marine microbes and their viruses. Trends in Microbiology, 2018, 26(11):955-965.
    [13] Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M, Arkhipova K, Carmichael M, Cruaud C, Dimier C, Domínguez-Huerta G, Ferland J, Kandels S, Liu YX, Marec C, Pesant S, Picheral M, Pisarev S, Poulain J, Tremblay JÉ, Vik D, Babin M, Bowler C, Culley AI, De Vargas C, Dutilh BE, Iudicone D, Karp-Boss L, Roux S, Sunagawa S, Wincker P, Sullivan MB, Acinas SG, Babin M, Bork P, Boss E, Bowler C, Cochrane G, De Vargas C, Follows M, Gorsky G, Grimsley N, Guidi L, Hingamp P, Iudicone D, Jaillon O, Kandels-Lewis S, Karp-Boss L, Karsenti E, Not F, Ogata H, Pesant S, Poulton N, Raes J, Sardet C, Speich S, Stemmann L, Sullivan MB, Sunagawa S, Wincker P. Marine DNA viral macro-and microdiversity from pole to pole. Cell, 2019, 177(5):1109-1123.e14.
    [14] Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F. Genomic analysis of uncultured marine viral communities. PNAS, 2002, 99(22):14250-14255.
    [15] Andrade-Martínez JS, Camelo Valera LC, Chica Cárdenas LA, Forero-Junco L, López-Leal G, Moreno-Gallego JL, Rangel-Pineros G, Reyes A. Computational tools for the analysis of uncultivated phage genomes. Microbiology and Molecular Biology Reviews:MMBR, 2022, 86(2):e0000421.
    [16] Coclet C, Roux S. Global overview and major challenges of host prediction methods for uncultivated phages. Current Opinion in Virology, 2021, 49:117-126.
    [17] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3):403-410.
    [18] Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using diamond. Nature Methods, 2021, 18(4):366-368.
    [19] Serres MH, Goswami S, Riley M. GenProtEC:an updated and improved analysis of functions of Escherichia coli K-12 proteins. Nucleic Acids Research, 2004, 32(suppl_1):D300-D302.
    [20] Riley M. Functions of the gene products of Escherichia coli. Microbiological Reviews, 1993, 57(4):862-952.
    [21] Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II euryarchaeota. Current Biology:CB, 2017, 27(9):1362-1368.
    [22] Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, Blanc-Mathieu R, Yamamoto K, Hingamp P, Sako Y, Sullivan MB, Goto S, Ogata H, Yoshida T. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere, 2017, 2(2):e00359-e00316.
    [23] Ahlgren NA, Fuchsman CA, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. The ISME Journal, 2019, 13(3):618-631.
    [24] Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 2003, 424(6952):1047-1051.
    [25] Sharon I, Battchikova N, Aro EM, Giglione C, Meinnel T, Glaser F, Pinter RY, Breitbart M, Rohwer F, Béjà O. Comparative metagenomics of microbial traits within oceanic viral communities. The ISME Journal, 2011, 5(7):1178-1190.
    [26] Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling LC, Barr JJ, Speth DR, Seguritan V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards RA. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nature Communications, 2014, 5:4498.
    [27] Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiology Reviews, 2016, 40(2):258-272.
    [28] Roux S, Páez-Espino D, Chen IMA, Palaniappan K, Ratner A, Chu K, Reddy TBK, Nayfach S, Schulz F, Call L, Neches RY, Woyke T, Ivanova NN, Eloe-Fadrosh EA, Kyrpides NC. IMG/VR v3:an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Research, 2021, 49(D1):D764-D775.
    [29] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962):167-170.
    [30] Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, Severinov K. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Molecular Microbiology, 2010, 77(6):1367-1379.
    [31] Zhang RS, Mirdita M, Levy Karin E, Norroy C, Galiez C, Söding J. SpacePHARER:sensitive identification of phages from CRISPR spacers in prokaryotic hosts. Bioinformatics, 2021, 37(19):3364-3366.
    [32] Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. CRISPRDetect:a flexible algorithm to define CRISPR arrays. BMC Genomics, 2016, 17:356.
    [33] Cassman N, Prieto-Davó A, Walsh K, Silva GGZ, Angly F, Akhter S, Barott K, Busch J, McDole T, Haggerty JM, Willner D, Alarcón G, Ulloa O, DeLong EF, Dutilh BE, Rohwer F, Dinsdale EA. Oxygen minimum zones harbour novel viral communities with low diversity. Environmental Microbiology, 2012, 14(11):3043-3065.
    [34] Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Solden L, Ellenbogen J, Runyon AT, Bolduc B, Woodcroft BJ, Saleska SR, Tyson GW, Wrighton KC, Sullivan MB, Rich VI. Soil viruses are underexplored players in ecosystem carbon processing. mSystems, 2018, 3(5):e00076-e00018.
    [35] Coutinho FH, Cabello-Yeves PJ, Gonzalez-Serrano R, Rosselli R, López-Pérez M, Zemskaya TI, Zakharenko AS, Ivanov VG, Rodriguez-Valera F. New viral biogeochemical roles revealed through metagenomic analysis of Lake Baikal. Microbiome, 2020, 8(1):163.
    [36] Sanguino L, Franqueville L, Vogel TM, Larose C. Linking environmental prokaryotic viruses and their host through CRISPRs. FEMS Microbiology Ecology, 2015, 91(5):fiv046.
    [37] Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, Flint HJ, Lamed R, Bayer EA, White BA. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environmental Microbiology, 2012, 14(1):207-227.
    [38] Xu B, Li FY, Cai LL, Zhang R, Fan L, Zhang CL. A holistic genome dataset of bacteria, archaea and viruses of the Pearl River Estuary. Scientific Data, 2022, 9:49.
    [39] Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nature Reviews Microbiology, 2021, 19(8):501-513.
    [40] Paul JH. Prophages in marine bacteria:dangerous molecular time bombs or the key to survival in the seas? The ISME Journal, 2008, 2(6):579-589.
    [41] Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genetics, 2013, 9(12):e1003987.
    [42] Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. eLife, 2015, 4:e08490.
    [43] Pride DT, Wassenaar TM, Ghose C, Blaser MJ. Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genomics, 2006, 7:8.
    [44] Gouy M, Gautier C. Codon usage in bacteria:correlation with gene expressivity. Nucleic Acids Research, 1982, 10(22):7055-7074.
    [45] Lu CY, Zhang Z, Cai ZN, Zhu ZZ, Qiu Y, Wu AP, Jiang TJ, Zheng HP, Peng YS. Prokaryotic virus host predictor:a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biology, 2021, 19(1):5.
    [46] Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun FZ. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Research, 2016, 45(1):39-53.
    [47] Liu D, Ma YJ, Jiang XP, He TT. Predicting virus-host association by kernelized logistic matrix factorization and similarity network fusion. BMC Bioinformatics, 2019, 20(suppl 16):594.
    [48] Villarroel J, Kleinheinz KA, Jurtz VI, Zschach H, Lund O, Nielsen M, Larsen MV. HostPhinder:a phage host prediction tool. Viruses, 2016, 8(5):116.
    [49] Galiez C, Siebert M, Enault F, Vincent J, Söding J. WIsH:who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics, 2017, 33(19):3113-3114.
    [50] Zhou F, Gan R, Zhang F, Ren C, Yu L, Si Y, Huang Z. PHISDetector:a tool to detect diverse in silico phage-host interaction signals for virome studies. Genomics, Proteomics & Bioinformatics, 2022. Doi:https://doi.org/10.1016/j.gpb.2022.02.003.
    [51] Wang WL, Ren J, Tang KJ, Dart E, Ignacio-Espinoza JC, Fuhrman JA, Braun J, Sun FZ, Ahlgren NA. A network-based integrated framework for predicting virus-prokaryote interactions. NAR Genomics and Bioinformatics, 2020, 2(2):lqaa044.
    [52] Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, Dutilh BE, Thompson FL. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nature Communications, 2017, 8:15955.
    [53] Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nature Methods, 2012, 9(4):357-359.
    [54] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics:Oxford, England, 2009, 25(14):1754-1760.
    [55] Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa JC, Roux S, Vincent F, Bittner L, Darzi Y, Wang J, Audic S, Berline L, Bontempi G, Cabello AM, Coppola L, Cornejo-Castillo FM, D'Ovidio F, De Meester L, Ferrera I, Garet-Delmas MJ, Guidi L, Lara E, Pesant S, Royo-Llonch M, Salazar G, Sánchez P, Sebastian M, Souffreau C, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Gorsky G, Not F, Ogata H, Speich S, Stemmann L, Weissenbach J, Wincker P, Acinas SG, Sunagawa S, Bork P, Sullivan MB, Karsenti E, Bowler C, De Vargas C, Raes J, Coordinators TO. Determinants of community structure in the global plankton interactome. Science, 2015, 348(6237):1262073.
    [56] Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li JH, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, Pelletier E, Bonde I, Nielsen T, Manichanh C, Arumugam M, Batto JM, Quintanilha Dos Santos MB, Blom N, Borruel N, Burgdorf KS, Boumezbeur F, Casellas F, Doré J, Dworzynski P, Guarner F, Hansen T, Hildebrand F, Kaas RS, Kennedy S, Kristiansen K, Kultima JR, Léonard P, Levenez F, Lund O, Moumen B, Le Paslier D, Pons N, Pedersen O, Prifti E, Qin JJ, Raes J, Sørensen S, Tap J, Tims S, Ussery DW, Yamada T, Renault P, Sicheritz-Ponten T, Bork P, Wang J, Brunak S, Ehrlich SD. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32(8):822-828.
    [57] Alrasheed H, Jin R, Weitz JS. Caution in inferring viral strategies from abundance correlations in marine metagenomes. Nature Communications, 2019, 10:501.
    [58] Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, Coutinho FH, Dinsdale EA, Felts B, Furby KA, George EE, Green KT, Gregoracci GB, Haas AF, Haggerty JM, Hester ER, Hisakawa N, Kelly LW, Lim YW, Little M, Luque A, McDole-Somera T, McNair K, De Oliveira LS, Quistad SD, Robinett NL, Sala E, Salamon P, Sanchez SE, Sandin S, Silva GGZ, Smith J, Sullivan C, Thompson C, Vermeij MJA, Youle M, Young C, Zgliczynski B, Brainard R, Edwards RA, Nulton J, Thompson F, Rohwer F. Lytic to temperate switching of viral communities. Nature, 2016, 531(7595):466-470.
    [59] Silveira CB, Rohwer FL. Piggyback-the-Winner in host-associated microbial communities. npj Biofilms and Microbiomes, 2016, 2:16010.
    [60] Wigington CH, Sonderegger D, Brussaard CPD, Buchan A, Finke JF, Fuhrman JA, Lennon JT, Middelboe M, Suttle CA, Stock C, Wilson WH, Wommack KE, Wilhelm SW, Weitz JS. Re-examination of the relationship between marine virus and microbial cell abundances. Nature Microbiology, 2016, 1:15024.
    [61] Coenen AR, Weitz JS. Limitations of correlation-based inference in complex virus-microbe communities. mSystems, 2018, 3(4):e00084-e00018.
    [62] Roux S, Krupovic M, Daly RA, Borges AL, Nayfach S, Schulz F, Sharrar A, Matheus Carnevali PB, Cheng JF, Ivanova NN, Bondy-Denomy J, Wrighton KC, Woyke T, Visel A, Kyrpides NC, Eloe-Fadrosh EA. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. Nature Microbiology, 2019, 4(11):1895-1906.
    [63] Coutinho FH, Zaragoza-Solas A, López-Pérez M, Barylski J, Zielezinski A, Dutilh BE, Edwards R, Rodriguez-Valera F. RaFAH:host prediction for viruses of bacteria and archaea based on protein content. Patterns:New York, N Y, 2021, 2(7):100274.
    [64] Li ML, Wang YN, Li FY, Zhao Y, Liu MY, Zhang SJ, Bin YN, Smith AI, Webb GI, Li J, Song JN, Xia JF. A deep learning-based method for identification of bacteriophage-host interaction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5):1801-1810.
    [65] Shang JY, Sun YN. Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning. BMC Biology, 2021, 19(1):250.
    [66] Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, Woyke T, Hallam SJ, Sullivan MB. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell-and meta-genomics. eLife, 2014, 3:e03125.
    [67] Labonté JM, Swan BK, Poulos B, Luo HW, Koren S, Hallam SJ, Sullivan MB, Woyke T, Eric Wommack K, Stepanauskas R. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. The ISME Journal, 2015, 9(11):2386-2399.
    [68] Jarett JK, Džunková M, Schulz F, Roux S, Paez-Espino D, Eloe-Fadrosh E, Jungbluth SP, Ivanova N, Spear JR, Carr SA, Trivedi CB, Corsetti FA, Johnson HA, Becraft E, Kyrpides N, Stepanauskas R, Woyke T. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. The ISME Journal, 2020, 14(10):2527-2541.
    [69] Mosier-Boss PA, Lieberman SH, Andrews JM, Rohwer FL, Wegley LE, Breitbart M. Use of fluorescently labeled phage in the detection and identification of bacterial species. Applied Spectroscopy, 2003, 57(9):1138-1144.
    [70] Dang VT, Sullivan MB. Emerging methods to study bacteriophage infection at the single-cell level. Frontiers in Microbiology, 2014, 5:724.
    [71] Deng L, Gregory A, Yilmaz S, Poulos BT, Hugenholtz P, Sullivan MB. Contrasting life strategies of viruses that infect photo-and heterotrophic bacteria, as revealed by viral tagging. mBio, 2012, 3(6):e00373-e00312.
    [72] Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, Sullivan MB. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature, 2014, 513(7517):242-245.
    [73] Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host-phage network through single-cell viral tagging. Nature Microbiology, 2019, 4(12):2192-2203.
    [74] Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, Amann R, Sullivan MB. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environmental Microbiology, 2013, 15(8):2306-2318.
    [75] Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science, 2011, 333(6038):58-62.
    [76] Morella NM, Yang SC, Hernandez CA, Koskella B. Rapid quantification of bacteriophages and their bacterial hosts in vitro and in vivo using droplet digital PCR. Journal of Virological Methods, 2018, 259:18-24.
    [77] Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, A Weitz D, Pitkänen LK, Vigneault F, Virta MP, Alm EJ. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. The ISME Journal, 2016, 10(2):427-436.
    [78] Sakowski EG, Arora-Williams K, Tian FN, Zayed AA, Zablocki O, Sullivan MB, Preheim SP. Interaction dynamics and virus-host range for estuarine actinophages captured by epicPCR. Nature Microbiology, 2021, 6(5):630-642.
    [79] Zheng WS, Zhao SJ, Yin YH, Zhang HD, Needham DM, Evans ED, Dai CL, Lu PJ, Alm EJ, Weitz DA. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science, 2022, 376(6597):eabm1483.
    [80] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950):289-293.
    [81] Marbouty M, Baudry L, Cournac A, Koszul R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Science Advances, 2017, 3(2):e1602105.
    [82] Bickhart DM, Watson M, Koren S, Panke-Buisse K, Cersosimo LM, Press MO, Van Tassell CP, Van Kessel JAS, Haley BJ, Kim SW, Heiner C, Suen G, Bakshy K, Liachko I, Sullivan ST, Myer PR, Ghurye J, Pop M, Weimer PJ, Phillippy AM, Smith TPL. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation. Genome Biology, 2019, 20(1):153.
    [83] Marbouty M, Thierry A, Millot GA, Koszul R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife, 2021, 10:e60608.
    [84] Krupovic M, Dolja VV, Koonin EV. Origin of viruses:primordial replicators recruiting capsids from hosts. Nature Reviews Microbiology, 2019, 17(7):449-458.
    [85] Danovaro R, Dell'Anno A, Corinaldesi C, Rastelli E, Cavicchioli R, Krupovic M, Noble RT, Nunoura T, Prangishvili D. Virus-mediated archaeal hecatomb in the deep seafloor. Science Advances, 2016, 2(10):e1600492.
    [86] Kim JG, Kim SJ, Cvirkaite-Krupovic V, Yu WJ, Gwak JH, López-Pérez M, Rodriguez-Valera F, Krupovic M, Cho JC, Rhee SK. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. PNAS, 2019, 116(31):15645-15650.
    [87] Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penadés JR, Ingmer H. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nature Communications, 2016, 7:13333.
    [88] Hussain FA, Dubert J, Elsherbini J, Murphy M, VanInsberghe D, Arevalo P, Kauffman K, Rodino-Janeiro BK, Gavin H, Gomez A, Lopatina A, Le Roux F, Polz MF. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science, 2021, 374(6566):488-492.
    [89] Debroas D, Siguret C. Viruses as key reservoirs of antibiotic resistance genes in the environment. The ISME Journal, 2019, 13(11):2856-2867.
    [90] Suttle CA. Viruses in the sea. Nature, 2005, 437(7057):356-361.
    [91] Toporek A, Lechtzin N. Viruses to the rescue-use of bacteriophage to treat resistant pulmonary infections. Cell, 2022, 185(11):1807-1808.
    [92] Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine, 2019, 25(5):730-733.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XU Bu, ZOU Xuerong, ZHU Yuanqing, FAN Lu, ZHANG Chuanlun. Advances in host prediction approaches for environmental phages. [J]. Acta Microbiologica Sinica, 2022, 62(12): 4663-4683

Copy
Share
Article Metrics
  • Abstract:414
  • PDF: 1034
  • HTML: 1494
  • Cited by: 0
History
  • Received:September 04,2022
  • Revised:October 30,2022
  • Online: December 08,2022
Article QR Code