Role of inflammasome in blood-brain barrier injury: a review
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [80]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Blood-brain barrier (BBB) is a natural structural and functional barrier, which can inhibit the entry of pathogens and control the entry of molecules into the brain parenchyma. An intact BBB is essential to maintain the homeostasis of the central nervous system. The function of this barrier is determined by its special multicellular structure. Each cell type has an indispensable contribution to the BBB integrity. Inflammasome known as a complex protein is a key component of the innate immune system and mediates the secretion of pro-inflammatory cytokines including IL-1β, IL-18, and IL-1α, which plays a critical role in the excessive inflammatory response. The up-regulated expression of proinflammatory cytokines results in the destruction of BBB. As a result, the pathogen breaks through BBB and enters the central nervous system, which finally causes brain diseases. In this paper, we reviewed infectious diseases and non-infectious diseases associated with the inflammasome-mediated injury of BBB.

    Reference
    [1] Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiology of Disease, 2010, 37(1):13-25.
    [2] Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 2006, 7(1):41-53.
    [3] Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. The Journal of Cell Biology, 1998, 142(1):117-127.
    [4] Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and-2:novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. The Journal of Cell Biology, 1998, 141(7):1539-1550.
    [5] Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier:development, composition and regulation. Vascular Pharmacology, 2002, 38(6):323-337.
    [6] Mukherjee DV, Tonry JH, Kim KS, Ramarao N, Popova TG, Bailey C, Popov S, Chung MC. Bacillus anthracis protease InhA increases blood-brain barrier permeability and contributes to cerebral hemorrhages. PLoS One, 2011, 6(3):e17921.
    [7] Hou FQ, Peng LC, Jiang JL, Chen TT, Xu DY, Huang QY, Ye C, Peng YY, Hu DL, Fang RD. ATP facilitates staphylococcal enterotoxin O induced neutrophil IL-1β secretion via NLRP3 inflammasome dependent pathways. Frontiers in Immunology, 2021, 12:649235.
    [8] Fang RD, Lei GH, Jiang JL, Du HH, Liu YJ, Lei ZH, Ye C, Li NZ, Peng YY. High-and low-virulent bovine Pasteurella multocida induced differential NLRP3 inflammasome activation and subsequent IL-1β secretion. Veterinary Microbiology, 2020, 243:108646.
    [9] Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunological Reviews, 2015, 265(1):6-21.
    [10] Ng TM, Kortmann J, Monack DM. Policing the cytosol—bacterial-sensing inflammasome receptors and pathways. Current Opinion in Immunology, 2013, 25(1):34-39.
    [11] Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome signaling in the aging brain and age-related neurodegenerative diseases. Molecular Neurobiology, 2022, 59(4):2288-2304.
    [12] Park S, Shin J, Bae J, Han D, Park SR, Shin J, Lee SK, Park HW. SIRT1 alleviates LPS-induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells, 2020, 9(3):728.
    [13] Schroder K, Tschopp J. The inflammasomes. Cell, 2010, 140(6):821-832.
    [14] Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019:a review. JAMA Neurology, 2020, 77(8):1018-1027.
    [15] Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ, Ulrich H. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Molecular Psychiatry, 2021, 26(4):1044-1059.
    [16] Sluyter R. The P2X7 receptor. Adv Exp Med Biol. 2017, 1051:17-53.
    [17] Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 receptor in infection and inflammation. Immunity, 2017, 47(1):15-31.
    [18] Kanyenda LJ, Verdile G, Martins R, Meloni BP, Chieng J, Mastaglia F, Laws SM, Anderton RS, Boulos S. Is cholesterol and amyloid-β stress induced CD147 expression a protective response? Evidence that extracellular cyclophilin a mediated neuroprotection is reliant on CD147. Journal of Alzheimer՚s Disease: JAD, 2014, 39(3):545-556.
    [19] Regenhardt RW, Bennion DM, Sumners C. Cerebroprotective action of angiotensin peptides in stroke. Clinical Science:London, England:1979, 2014, 126(3):195-205.
    [20] Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, Solomon T. Controversies in HIV-associated neurocognitive disorders. The Lancet Neurology, 2014, 13(11):1139-1151.
    [21] Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Annals of Neurology, 2009, 66(2):253-258.
    [22] Kanmogne GD, Primeaux C, Grammas P. HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability:implications for the pathogenesis of HIV-associated dementia. Journal of Neuropathology and Experimental Neurology, 2005, 64(6):498-505.
    [23] Ye C, Huang QY, Jiang JL, Li G, Xu DY, Zeng Z, Peng LC, Peng YY, Fang RD. ATP-dependent activation of NLRP3 inflammasome in primary murine macrophages infected by pseudorabies virus. Veterinary Microbiology, 2021, 259:109130.
    [24] Pinheiro TJ, Guimarães LF, Silva MTT, Soares CN. Neurological manifestations of chikungunya and Zika infections. Arquivos De Neuro-Psiquiatria, 2016, 74(11):937-943.
    [25] Wang WY, Cai ML, Hu JY, Zhang ZC, Wang X, Chang XR, Zhang F, Guo CM, Wang XP. Mechanism of blood-brain barrier disruption by an Escherichia coli from lambs with severe diarrhea and meningoencephalitis. Microbial Pathogenesis, 2020, 147:104288.
    [26] Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002, 418(6894):191-195.
    [27] Yang H, Hreggvidsdottir HS, Palmblad K, Wang HC, Ochani M, Li JH, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y, Akira S, Bierhaus A, Erlandsson-Harris H, Andersson U, Tracey KJ. A critical cysteine is required for HMGB1 binding to toll-like receptor 4 and activation of macrophage cytokine release. PNAS, 2010, 107(26):11942-11947.
    [28] Miraglia MC, Costa Franco MM, Rodriguez AM, Bellozi PMQ, Ferrari CC, Farias MI, Dennis VA, Barrionuevo P, De Oliveira ACP, Pitossi F, Kim KS, Delpino MV, Oliveira SC, Giambartolomei GH. Glial cell-elicited activation of brain microvasculature in response to Brucella abortus infection requires ASC inflammasome-dependent IL-1β production. Journal of Immunology: Baltimore, Md: 1950, 2016, 196(9):3794-3805.
    [29] Xu DY, Wu XP, Peng LC, Chen TT, Huang QY, Wang Y, Ye C, Peng YY, Hu DL, Fang RD. The critical role of NLRP6 inflammasome in Streptococcus pneumoniae infection in vitro and in vivo. International Journal of Molecular Sciences, 2021, 22(8):3876.
    [30] Barichello T, Generoso JS, Silvestre C, Costa CS, Carrodore MM, Cipriano AL, Michelon CM, Petronilho F, Dal-Pizzol F, Vilela MC, Teixeira AL. Circulating concentrations, cerebral output of the CINC-1 and blood-brain barrier disruption in Wistar rats after pneumococcal meningitis induction. European Journal of Clinical Microbiology & Infectious Diseases:Official Publication of the European Society of Clinical Microbiology, 2012, 31(8):2005-2009.
    [31] McLoughlin A, Rochfort KD, McDonnell CJ, Kerrigan SW, Cummins PM. Staphylococcus aureus-mediated blood-brain barrier injury:an in vitro human brain microvascular endothelial cell model. Cellular Microbiology, 2017, 19(3):e12664.
    [32] Seydel KB, Kampondeni SD, Valim C, Potchen MJ, Milner DA, Muwalo FW, Birbeck GL, Bradley WG, Fox LL, Glover SJ, Hammond CA, Heyderman RS, Chilingulo CA, Molyneux ME, Taylor TE. Brain swelling and death in children with cerebral malaria. The New England Journal of Medicine, 2015, 372(12):1126-1137.
    [33] Pal P, Daniels BP, Oskman A, Diamond MS, Klein RS, Goldberg DE. Plasmodium falciparum histidine-rich protein II compromises brain endothelial barriers and may promote cerebral malaria pathogenesis. mBio, 2016, 7(3):e00617-16.
    [34] Krueger M, Bechmann I, Immig K, Reichenbach A, Härtig W, Michalski D. Blood—brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism, 2015, 35(2):292-303.
    [35] Da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FRS. The impact of microglial activation on blood-brain barrier in brain diseases. Frontiers in Cellular Neuroscience, 2014, 8:362.
    [36] Li Y, Li J, Li SS, Li Y, Wang XX, Liu BL, Fu Q, Ma SP. Curcumin attenuates glutamate neurotoxicity in the Hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicology and Applied Pharmacology, 2015, 286(1):53-63.
    [37] Mohamed IN, Ishrat T, Fagan SC, El-Remessy AB. Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxidants & Redox Signaling, 2015, 22(13):1188-1206.
    [38] Liu B, Xu C, Wu X, Liu F, Du Y, Sun J, Tao J, Dong J. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience, 2015, 294:193-205.
    [39] Keep RF, Zhou NN, Xiang JM, Andjelkovic AV, Hua Y, Xi GH. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids and Barriers of the CNS, 2014, 11:18.
    [40] Zheng HP, Chen CL, Zhang J, Hu ZP. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovascular Diseases:Basel, Switzerland, 2016, 42(3/4):155-169.
    [41] De Vries HE, Kooij G, Frenkel D, Georgopoulos S, Monsonego A, Janigro D. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders:implications for clinical disease. Epilepsia, 2012, 53(Suppl 6):45-52.
    [42] Askarova S, Tsoy A, Shalakhmetova T, Lee JCM. Effects of amyloid beta peptide on neurovascular cells. Central Asian Journal of Global Health, 2013, 1(1):4.
    [43] Carrano A, Hoozemans JJM, Van Der Vies SM, Van Horssen J, De Vries HE, Rozemuller AJM. Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neuro-Degenerative Diseases, 2012, 10(1/2/3/4):329-331.
    [44] Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434):674-678.
    [45] Xu SY, Bian HJ, Shu S, Xia SN, Gu Y, Zhang MJ, Xu Y, Cao X. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neuroscience & Therapeutics, 2021, 27(10):1224-1237.
    [46] Chang YP, Ka SM, Hsu WH, Chen A, Chao LK, Lin CC, Hsieh CC, Chen MC, Chiu HW, Ho CL, Chiu YC, Liu ML, Hua KF. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. Journal of Cellular Physiology, 2015, 230(7):1567-1579.
    [47] Ren HL, Kong Y, Liu ZJ, Zang DY, Yang XX, Wood K, Li MS, Liu Q. Selective NLRP3(pyrin domain-containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke, 2018, 49(1):184-192.
    [48] Gao L, Dong Q, Song ZH, Shen F, Shi JQ, Li YS. NLRP3 inflammasome:a promising target in ischemic stroke. Inflammation Research, 2017, 66(1):17-24.
    [49] Jiang B, Li L, Chen QW, Tao YH, Yang LM, Zhang B, Zhang JH, Feng H, Chen Z, Tang J, Zhu G. Role of glibenclamide in brain injury after intracerebral hemorrhage. Translational Stroke Research, 2017, 8(2):183-193.
    [50] Ma CY, Wang XQ, Xu T, Yu X, Zhang S, Liu SL, Gao YS, Fan SN, Li CX, Zhai CM, Cheng FF, Wang QG. Qingkailing injection ameliorates cerebral ischemia-reperfusion injury and modulates the AMPK/NLRP3 inflammasome signalling pathway. BMC Complementary and Alternative Medicine, 2019, 19(1):320.
    [51] Yin DP, Zhou S, Xu X, Gao WW, Li F, Ma YY, Sun DD, Wu YG, Guo Q, Liu HM, Han LL, Wang ZG, Wang Y, Zhang JN. Dexmedetomidine attenuated early brain injury in rats with subarachnoid haemorrhage by suppressing the inflammatory response:the TLR4/NF-κB pathway and the NLRP3 inflammasome may be involved in the mechanism. Brain Research, 2018, 1698:1-10.
    [52] Song HL, Zhang SB. Therapeutic effect of dexmedetomidine on intracerebral hemorrhage via regulating NLRP3. European Review for Medical and Pharmacological Sciences, 2019, 23(6):2612-2619.
    [53] Al Rihani SB, Darakjian LI, Kaddoumi A. Oleocanthal-rich extra-virgin olive oil restores the blood-brain barrier function through NLRP3 inflammasome inhibition simultaneously with autophagy induction in TgSwDI mice. ACS Chemical Neuroscience, 2019, 10(8):3543-3554.
    [54] Qu XY, Zhang YM, Tao LN, Gao H, Zhai JH, Sun JM, Song YQ, Zhang SX. XingNaoJing injections protect against cerebral ischemia/reperfusion injury and alleviate blood-brain barrier disruption in rats, through an underlying mechanism of NLRP3 inflammasomes suppression. Chinese Journal of Natural Medicines, 2019, 17(7):498-505.
    [55] Xu FL, Shen G, Su ZP, He ZJ, Yuan LT. Glibenclamide ameliorates the disrupted blood-brain barrier in experimental intracerebral hemorrhage by inhibiting the activation of NLRP3 inflammasome. Brain and Behavior, 2019, 9(4):e01254.
    [56] Liu HX, Wu X, Luo JN, Zhao L, Li X, Guo H, Bai H, Cui WX, Guo W, Feng DY, Qu Y. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Experimental Neurology, 2020, 329:113302.
    [57] Chen XW, Xiang X, Xie T, Chen ZJ, Mou Y, Gao ZX, Xie X, Song M, Huang H, Gao ZY, Chen M. Memantine protects blood-brain barrier integrity and attenuates neurological deficits through inhibiting nitric oxide synthase ser1412 phosphorylation in intracerebral hemorrhage rats:involvement of peroxynitrite-related matrix metalloproteinase-9/NLRP3 inflammasome activation. Neuroreport, 2021, 32(3):228-237.
    [58] De Oliveira LRC, Mimura LAN, Fraga-Silva T, Ishikawa LLW, Fernandes AAH, Zorzella-Pezavento SFG, Sartori A. Calcitriol prevents neuroinflammation and reduces blood-brain barrier disruption and local macrophage/microglia activation. Frontiers in Pharmacology, 2020, 11:161.
    [59] Wei CC, Guo SQ, Liu WC, Jin F, Wei BY, Fan HY, Su HX, Liu JH, Zhang N, Fang DZ, Li GX, Shu SX, Li XF, He XY, Zhang X, Duan CZ. Resolvin D1 ameliorates inflammation-mediated blood-brain barrier disruption after subarachnoid hemorrhage in rats by modulating A20 and NLRP3 inflammasome. Frontiers in Pharmacology, 2021, 11:610734.
    [60] Wei X, Hu CC, Zhang YL, Yao SL, Mao WK. Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury. Journal of Huazhong University of Science and Technology[Medical Sciences], 2016, 36(4):576-583.
    [61] Xu GH, Shi D, Zhi ZZ, Ao RG, Yu BQ. Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats. Journal of Cellular Biochemistry, 2019, 120(4):5183-5192.
    [62] Luo X, Zeng HL, Fang CZ, Zhang BH. N-acetylserotonin derivative exerts a neuroprotective effect by inhibiting the NLRP3 inflammasome and activating the PI3K/Akt/Nrf2 pathway in the model of hypoxic-ischemic brain damage. Neurochemical Research, 2021, 46(2):337-348.
    [63] Li JR, Chen JS, Mo HB, Chen JY, Qian C, Yan F, Gu C, Hu Q, Wang L, Chen G. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Molecular Neurobiology, 2016, 53(4):2668-2678.
    [64] Zhuang K, Zuo YC, Sherchan P, Wang JK, Yan XX, Liu F. Hydrogen inhalation attenuates oxidative stress related endothelial cells injury after subarachnoid hemorrhage in rats. Frontiers in Neuroscience, 2020, 13:1441.
    [65] Ni HB, Rui Q, Lin XL, Li D, Liu HX, Chen G. 2-BFI provides neuroprotection against inflammation and necroptosis in a rat model of traumatic brain injury. Frontiers in Neuroscience, 2019, 13:674.
    [66] Cheng YJ, Liu MJ, Tang H, Chen B, Yang GY, Zhao WG, Cai Y, Shang HB. iTRAQ-based quantitative proteomics indicated Nrf2/OPTN-mediated mitophagy inhibits NLRP3 inflammasome activation after intracerebral hemorrhage. Oxidative Medicine and Cellular Longevity, 2021, 2021:6630281.
    [67] Ismael S, Nasoohi S, Yoo A, Mirzahosseini G, Ahmed HA, Ishrat T. Verapamil as an adjunct therapy to reduce tPA toxicity in hyperglycemic stroke:implication of TXNIP/NLRP3 inflammasome. Molecular Neurobiology, 2021, 58(8):3792-3804.
    [68] Lu M, Yang JZ, Geng F, Ding JH, Hu G. Iptakalim confers an antidepressant effect in a chronic mild stress model of depression through regulating neuro-inflammation and neurogenesis. International Journal of Neuropsychopharmacology, 2014, 17(9):1501-1510.
    [69] Amruta N, Bix G. ATN-161 ameliorates ischemia/reperfusion-induced oxidative stress, fibro-inflammation, mitochondrial damage, and apoptosis-mediated tight junction disruption in bEnd.3 cells. Inflammation, 2021, 44(6):2377-2394.
    [70] Cao GS, Jiang N, Hu Y, Zhang YY, Wang GY, Yin MZ, Ma XN, Zhou KC, Qi J, Yu BY, Kou JP. Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. International Journal of Molecular Sciences, 2016, 17(9):1418.
    [71] Zeng J, Chen YZ, Ding R, Feng L, Fu ZH, Yang S, Deng XQ, Xie ZC, Zheng SZ. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS-and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. Journal of Neuroinflammation, 2017, 14(1):119.
    [72] Chen SL, Tang CG, Ding HG, Wang ZH, Liu XQ, Chai YF, Jiang WQ, Han YL, Zeng HK. Maf1 ameliorates sepsis-associated encephalopathy by suppressing the NF-κB/NLRP3 inflammasome signaling pathway. Frontiers in Immunology, 2020, 11:594071.
    [73] Sun ZZ, Nyanzu M, Yang S, Zhu XH, Wang KK, Ru JN, Yu EX, Zhang HL, Wang ZZ, Shen J, Zhuge QC, Huang LJ. VX765 attenuates pyroptosis and HMGB1/TLR4/NF-κB pathways to improve functional outcomes in TBI mice. Oxidative Medicine and Cellular Longevity, 2020, 2020:7879629.
    [74] Zhang QS, Heng Y, Chen Y, Luo P, Wen L, Zhang Z, Yuan YH, Chen NH. A novel bibenzyl compound (20C) protects mice from 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine/probenecid toxicity by regulating the α-synuclein-related inflammatory response. The Journal of Pharmacology and Experimental Therapeutics, 2017, 363(2):284-292.
    [75] Liu PF, Gao QS, Guan L, Hu YT, Jiang JW, Gao T, Sheng WX, Xue XY, Qiao H, Li TZ. Atorvastatin attenuates surgery-induced BBB disruption and cognitive impairment partly by suppressing NF-κB pathway and NLRP3 inflammasome activation in aged mice. Acta Biochimica et Biophysica Sinica, 2021, 53(5):528-537.
    [76] Kim SM, Ha JS, Han AR, Cho SW, Yang SJ. Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation. BMB Reports, 2019, 52(10):613-618.
    [77] Xu WL, Li T, Gao LS, Zheng JW, Yan J, Zhang JM, Shao AW. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. Journal of Neuroinflammation, 2019, 16(1):247.
    [78] Wang XX, Li RP, Wang X, Fu Q, Ma SP. Umbelliferone ameliorates cerebral ischemia-reperfusion injury via upregulating the PPAR gamma expression and suppressing TXNIP/NLRP3 inflammasome. Neuroscience Letters, 2015, 600:182-187.
    [79] Liu PH, Huang GJ, Wei T, Gao J, Huang CL, Sun MW, Zhu LM, Shen WL. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochimica et Biophysica Acta:BBA-Molecular Basis of Disease, 2018, 1864(3):764-777.
    [80] Xiong R, Zhou XG, Tang Y, Wu JM, Sun YS, Teng JF, Pan R, Law BYK, Zhao Y, Qiu WQ, Wang XL, Liu S, Wang YL, Yu L, Yu CL, Mei QB, Qin DL, Wu AG. Lychee seed polyphenol protects the blood-brain barrier through inhibiting Aβ (25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy in bEnd.3 cells and APP/PS1 mice. Phytotherapy Research, 2021, 35(2):954-973.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JIA Kaixiang, CAO Xinrui, FANG Rendong. Role of inflammasome in blood-brain barrier injury: a review. [J]. Acta Microbiologica Sinica, 2022, 62(12): 4798-4810

Copy
Share
Article Metrics
  • Abstract:310
  • PDF: 1062
  • HTML: 1858
  • Cited by: 0
History
  • Received:April 04,2022
  • Revised:June 27,2022
  • Online: December 08,2022
Article QR Code