Polyethylene terephthalate hydrolase IsPETase and its application prospect
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [75]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    As biotechnology advances, biodegradation of polyethylene terephthalate (PET) has emerged as an attractive strategy, promising to reduce the environmental burden caused by waste PET. Among many PET hydrolases, PETase from Ideonella sakaiensis has become a hot research topic owing to high specificity to PET substrate. Based on the structure and function of PETase, this review summarized modifications of this enzyme in recent years to improve the degradation activity, thermostability, and adsorption of the enzyme. Moreover, we also introduced the secretory expression systems and the cell surface display of PETase, as well as the application of the PETase together with MHETase. Finally, we summed up the challenges in and possible solutions to plastic biodegradation. This study is expected to provide a reference for promoting the practical application of polymer biodegradation.

    Reference
    [1] DHANRAJ ND, HATHA AAM, JISHA MS. Biodegradation of petroleum based and bio-based plastics:approaches to increase the rate of biodegradation[J]. Archives of Microbiology, 2022, 204(5):258.
    [2] SOONG YHV, SOBKOWICZ MJ, XIE DM. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes[J]. Bioengineering:Basel, Switzerland, 2022, 9(3):98.
    [3] LALDINPUII Z, LALHMANGAIHZUALA S, PACHUAU Z, VANLALDINPUIA K. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst[J]. Waste Management:New York, N Y, 2021, 126:1-10.
    [4] 杜灿, 于岸弘, 张颖, 高月, 刘倍汐, 叶慧敏, 孔亮. PET塑料降解微生物的研究进展[J]. 广东化工, 2022(5):82-83, 114. DU C, YU AH, ZHANG Y, GAO Y, LIU BX, YE HM, KONG L. Research progress of PET plastic degrading microorganisms[J]. Guangdong Chemical Industry, 2022(5):82-83, 114 (in Chinese).
    [5] 靳小平, 朱玉方, 徐卉桐, 谭煜, 买买提江·依米提, 何明宇. 废弃塑料降解与回收再利用研究进展[J]. 工程塑料应用, 2021(9):139-144. JIN XP, ZHU YF, XU HT, TAN Y, YIMIT M, HE MY. Research progress on degradation and recycling of waste plastics[J]. Engineering Plastics Application, 2021(9):139-144 (in Chinese).
    [6] SAMAK NA, JIA Y, SHARSHAR MM, MU T, YANG M, PEH S, XING J. Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling[J]. Environment International, 2020, 145:106144.
    [7] WEI R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics:how far are we?[J]. Microbial Biotechnology, 2017, 10(6):1308-1322.
    [8] URBANEK AK, KOSIOROWSKA KE, MIROŃCZUK AM. Current knowledge on polyethylene terephthalate degradation by genetically modified microorganisms[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:771133.
    [9] 石利霞, 高松枫, 朱蕾蕾. PET水解酶的研究进展[J]. 生物技术通报, 2020, 36(10):226-236. SHI LX, GAO SF, ZHU LL. Research advance in polyethylene terephthalate hydrolytic enzymes[J]. Biotechnology Bulletin, 2020, 36(10):226-236 (in Chinese).
    [10] 姜杉, 苏婷婷, 王战勇. 聚对苯二甲酸乙二醇酯(PET)生物降解进展[J]. 塑料, 2021(4):90-95. JIANG S, SU TT, WANG ZY. Progress in biodegradation of polyethylene terephthalate (PET)[J]. Plastics, 2021(4):90-95 (in Chinese).
    [11] KAWAI F, KAWABATA T, ODA M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Applied Microbiology and Biotechnology, 2019, 103(11):4253-4268.
    [12] CARR CM, CLARKE DJ, DOBSON ADW. Microbial polyethylene terephthalate hydrolases:current and future perspectives[J]. Frontiers in Microbiology, 2020, 11:571265.
    [13] 刘欣悦, 崔颖璐. PET塑料废弃物及微塑料生物降解与转化的研究现状与展望[J]. 生物加工过程, 2022(2):226-234. LIU XY, CUI YL. Biodegradation and conversion of polyethylene terephthalate (PET) wastes and microplastics:a review[J]. Chinese Journal of Bioprocess Engineering, 2022(2):226-234 (in Chinese).
    [14] YOSHIDA S, HIRAGA K, TAKEHANA T, TANIGUCHI I, YAMAJI H, MAEDA Y, TOYOHARA K, MIYAMOTO K, KIMURA Y, ODA K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278):1196-1199.
    [15] HAN X, LIU W, HUANG JW, MA J, ZHENG Y, KO TP, XU L, CHENG YS, CHEN CC, GUO RT. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications, 2017, 8(1):2106.
    [16] JOO S, CHO IJ, SEO H, SON HF, SAGONG HY, SHIN TJ, CHOI SY, LEE SY, KIM KJ. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9(1):382.
    [17] FECKER T, GALAZ-DAVISON P, ENGELBERGER F, NARUI Y, SOTOMAYOR M, PARRA LP, RAMÍREZ-SARMIENTO CA. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase[J]. Biophysical Journal, 2018, 114(6):1302-1312.
    [18] AUSTIN HP, ALLEN MD, DONOHOE BS, RORRER NA, KEARNS FL, SILVEIRA RL, POLLARD BC, DOMINICK G, DUMAN R, EL OMARI K, MYKHAYLYK V, WAGNER A, MICHENER WE, AMORE A, SKAF MS, CROWLEY MF, THORNE AW, JOHNSON CW, WOODCOCK HL, MCGEEHAN JE, BECKHAM GT. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19):E4350-E4357.
    [19] LIU CC, SHI C, ZHU SJ, WEI RS, YIN CC. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis[J]. Biochemical and Biophysical Research Communications, 2019, 508(1):289-294.
    [20] CHEN CC, HAN X, KO TP, LIU W, GUO RT. Structural studies reveal the molecular mechanism of PETase[J]. 2018, 285(20):3717-3723.
    [21] 靳玉瑞, 李爱秀, 张力. 一种新型PET水解酶的结构与催化机制研究进展[J]. 中国塑料, 2019(3):106-112. JIN YR, LI AX, ZHANG L. Progress of the structure and catalytic mechanism of one new PET hydrolase[J]. China Plastics, 2019(3):106-112 (in Chinese).
    [22] SHIRKE AN, WHITE C, ENGLAENDER JA, ZWARYCZ A, BUTTERFOSS GL, LINHARDT RJ, GROSS RA. Stabilizing leaf and branch compost cutinase (LCC) with glycosylation:mechanism and effect on PET hydrolysis[J]. Biochemistry, 2018, 57(7):1190-1200.
    [23] BERSELLI A, RAMOS MJ, MENZIANI MC. Novel pet-degrading enzymes:structure-function from a computational perspective[J]. Chembiochem, 2021, 22(12):2032-2050.
    [24] LIU B, HE L, WANG L, LI T, LI C, LIU H, LUO Y, BAO R. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis[J]. Chembiochem, 2018, 19(14):1471-1475.
    [25] 李秀, 杨海涛, 王泽方. 聚对苯二甲酸乙二醇酯降解酶的研究进展[J]. 微生物学报, 2019, 59(12):2251-2262. LI X, YANG HT, WANG ZF. Advance in polyethylene terephthalate degrading enzyme[J]. Acta Microbiologica Sinica, 2019, 59(12):2251-2262 (in Chinese).
    [26] WEI R, von HAUGWITZ G, PFAFF L, MICAN J, BADENHORST CPS, LIU WD, WEBER G, AUSTIN HP, BEDNAR D, DAMBORSKY J, BORNSCHEUER UT. Mechanism-based design of efficient PET hydrolases[J]. ACS Catalysis, 2022, 12(6):3382-3396.
    [27] JERVES C, NEVES RPP, RAMOS MJ, da SILVA S, FERNANDES PA. Reaction mechanism of the PET degrading enzyme PETase studied with DFT/MM molecular dynamics simulations[J]. ACS Catalysis, 2021, 11(18):11626-11638.
    [28] da COSTA CHS, DOS SANTOS AM, ALVES CN, MARTÍ S, MOLINER V, SANTANA K, LAMEIRA J. Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding[J]. Proteins, 2021, 89(10):1340-1352.
    [29] GUO BY, VANGA SR, LOPEZ-LORENZO X, SAENZ-MENDEZ P, ERICSSON SR, FANG Y, YE XC, SCHRIEVER K, BÄCKSTRÖM E, BIUNDO A, ZUBAREV RA, FURÓ I, HAKKARAINEN M, SYRÉN PO. Conformational selection in biocatalytic plastic degradation by PETase[J]. ACS Catalysis, 2022, 12(6):3397-3409.
    [30] DANSO D, CHOW J, STREIT WR. Plastics:environmental and biotechnological perspectives on microbial degradation[J]. Applied and Environmental Microbiology, 2019, 85(19):e01095-e01019.
    [31] HIRAGA K, TANIGUCHI I, YOSHIDA S, KIMURA Y, ODA K. Biodegradation of waste PET[J]. EMBO Reports, 2020, 21(2):e49826.
    [32] KAN Y, HE L, LUO Y, BAO R. IsPETase is a novel biocatalyst for poly(ethylene terephthalate) (PET) hydrolysis[J]. Chembiochem, 2021, 22(10):1706-1716.
    [33] TANIGUCHI I, YOSHIDA S, HIRAGA K, MIYAMOTO K, KIMURA Y, ODA K. Biodegradation of PET:current status and application aspects[J]. ACS Catalysis, 2019, 9(5):4089-4105.
    [34] GAO R, PAN H, LIAN J. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases[J]. Enzyme and Microbial Technology, 2021, 150:109868.
    [35] 马渊, 姚明东, 李炳志, 丁明珠, 何博, 陈思, 周晓, 元英进. 通过蛋白质工程提高聚对苯二甲酸乙二醇酯水解酶的活性[J]. 工程, 2018(6):888-893. MA Y, YAO MD, LI BZ, DING MZ, HE B, CHEN S, ZHOU X, YUAN YJ. Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering[J]. Engineering, 2018(6):888-893 (in Chinese).
    [36] CHEN CC, HAN X, LI X, JIANG PC, NIU D, MA LX, LIU WD, LI SY, QU YY, HU HB, MIN J, YANG Y, ZHANG LL, ZENG W, HUANG JW, DAI LH, GUO RT. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis[J]. Nature Catalysis, 2021, 4(5):425-430.
    [37] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, WU B. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3):1340-1350.
    [38] ODA M, YAMAGAMI Y, INABA S, OIDA T, YAMAMOTO M, KITAJIMA S, KAWAI F. Enzymatic hydrolysis of PET:functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity[J]. Applied Microbiology and Biotechnology, 2018, 102(23):10067-10077.
    [39] THOMSEN TB, HUNT CJ, MEYER AS. Influence of substrate crystallinity and glass transition temperature on enzymatic degradation of polyethylene terephthalate (PET)[J]. New Biotechnology, 2022, 69:28-35.
    [40] TOURNIER V, TOPHAM CM, GILLES A, DAVID B, FOLGOAS C, MOYA-LECLAIR E, KAMIONKA E, DESROUSSEAUX ML, TEXIER H, GAVALDA S, COT M, GUÉMARD E, DALIBEY M, NOMME J, CIOCI G, BARBE S, CHATEAU M, ANDRÉ I, DUQUESNE S, MARTY A. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802):216-219.
    [41] SON H, CHO IJ, JOO S, SEO H, SAGONG HY, CHOI SY, LEE SY, KIM KJ. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. ACS Catalysis, 2019, 9(4):3519-3526.
    [42] SON HF, JOO S, SEO H, SAGONG HY, LEE SH, HONG H, KIM KJ. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis[J]. Enzyme and Microbial Technology, 2020, 141:109656.
    [43] ZHONG-JOHNSON EZL, VOIGT CA, SINSKEY AJ. An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films[J]. Scientific Reports, 2021, 11(1):928.
    [44] MENG X, YANG L, LIU H, LI Q, XU G, ZHANG Y, GUAN F, ZHANG Y, ZHANG W, WU N, TIAN J. Protein engineering of stable IsPETase for PET plastic degradation by Premuse[J]. International Journal of Biological Macromolecules, 2021, 180:667-676.
    [45] BROTT S, PFAFF L, SCHURICHT J, SCHWARZ JN, BÖTTCHER D, BADENHORST CPS, WEI R, BORNSCHEUER UT. Engineering and evaluation of thermostable IsPETase variants for PET degradation[J]. Engineering in Life Sciences, 2022, 22(3/4):192-203.
    [46] BELL EL, SMITHSON R, KILBRIDE S, FOSTER J, HARDY FJ, RAMACHANDRAN S, TEDSTONE AA, HAIGH SJ, GARFORTH AA, DAY PJR, LEVY C, SHAVER MP, GREEN AP. Directed evolution of an efficient and thermostable PET depolymerase[J]. Nature Catalysis, 2022, 5(8):673-681.
    [47] SEO H, KIM S, SON HF, SAGONG HY, JOO S, KIM KJ. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli[J]. Biochemical and Biophysical Research Communications, 2019, 508(1):250-255.
    [48] SHI LX, LIU HF, GAO SF, WENG YX, ZHU LL. Enhanced extracellular production of IsPETase in Escherichia coli via engineering of the pelB signal peptide[J]. Journal of Agricultural and Food Chemistry, 2021, 69(7):2245-2252.
    [49] CUI LP, QIU YM, LIANG Y, DU CJ, DONG WL, CHENG C, HE BF. Excretory expression of IsPETase in E. coli by an enhancer of signal peptides and enhanced PET hydrolysis[J]. International Journal of Biological Macromolecules, 2021, 188:568-575.
    [50] HUANG X, CAO LC, QIN ZM, LI SF, KONG W, LIU YH. Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide[J]. Journal of Agricultural and Food Chemistry, 2018, 66(50):13217-13227.
    [51] MOOG D, SCHMITT J, SENGER J, ZARZYCKI J, REXER KH, LINNE U, ERB T, MAIER UG. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation[J]. Scientific Reports, 2019, 18(1):171.
    [52] KIM JW, PARK SB, TRAN QG, CHO DH, CHOI DY, LEE YJ, KIM HS. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae[J]. Microbial Cell Factories, 2020, 19(1):97.
    [53] SERRA S, de SIMEIS D. Use of Lactobacillus rhamnosus (ATCC 53103) as whole-cell biocatalyst for the regio-and stereo-selective hydration of oleic, linoleic, and linolenic acid[J]. Catalysts, 2018, 8(3):109.
    [54] 陈卓芝. 高效降解高结晶度PET的全细胞催化系统的构建与应用[D]. 天津:天津大学硕士学位论文, 2020. CHEN ZZ. Construction and application of whole-cell catalytic system for degradation of high-efficiency and high-crystallinity PET[D]. Tianjin:Master's Thesis of Tianjin University, 2020 (in Chinese)
    [55] CHEN Z, WANG Y, CHENG Y, WANG X, TONG S, YANG H, WANG Z. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase[J]. The Science of the Total Environment, 2020, 709:136138.
    [56] HEYDE SAH, ARNLING BÅÅTH J, WESTH P, NØRHOLM MHH, JENSEN K. Surface display as a functional screening platform for detecting enzymes active on PET[J]. Microbial Cell Factories, 2021, 20(1):93.
    [57] YAN F, WEI R, CUI Q, BORNSCHEUER UT, LIU YJ. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum[J]. Microbial Biotechnology, 2021, 14(2):374-385.
    [58] FURUKAWA M, KAWAKAMI N, ODA K, MIYAMOTO K. Acceleration of enzymatic degradation of poly(ethylene terephthalate) by surface coating with anionic surfactants[J]. ChemSusChem, 2018, 11(23):4018-4025.
    [59] PUSPITASARI N, TSAI SL, LEE CK. Fungal hydrophobin RolA enhanced PETase hydrolysis of polyethylene terephthalate[J]. Applied Biochemistry and Biotechnology, 2021, 193(5):1284-1295.
    [60] PUSPITASARI N, TSAI SL, LEE CK. Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs[J]. International Journal of Biological Macromolecules, 2021, 176:157-164.
    [61] 王泽方, 杨海涛, 陈卓芝, 程莹莹, 王雪, 童善惟, 侯宇佳. 细胞表面共展示PET分解酶和疏水蛋白的重组毕赤酵母. 中国:CN106497963B. 2019-09-06.
    [62] DAI L, QU Y, HUANG JW, HU Y, HU H, LI S, CHEN CC, GUO RT. Enhancing PET hydrolytic enzyme activity by fusion of the cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei[J]. Journal of Biotechnology, 2021, 334:47-50.
    [63] KNOTT BC, ERICKSON E, ALLEN MD, GADO JE, GRAHAM R, KEARNS FL, PARDO I, TOPUZLU E, ANDERSON JJ, AUSTIN HP, DOMINICK G, JOHNSON CW, RORRER NA, SZOSTKIEWICZ CJ, COPIÉ V, PAYNE CM, WOODCOCK HL, DONOHOE BS, BECKHAM GT, MCGEEHAN JE. Characterization and engineering of a two-enzyme system for plastics depolymerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41):25476-25485.
    [64] QI XH, MA Y, CHANG HC, LI BZ, DING MZ, YUAN YJ. Evaluation of PET degradation using artificial microbial consortia[J]. Frontiers in Microbiology, 2021, 12:778828.
    [65] VERSCHOOR JA, KUSUMAWARDHANI H, RAM AFJ, de WINDE JH. Toward microbial recycling and upcycling of plastics:prospects and challenges[J]. Frontiers in Microbiology, 2022, 13:821629.
    [66] BALLERSTEDT H, TISO T, WIERCKX N, WEI R, AVEROUS L, BORNSCHEUER U, O'CONNOR K, FLOEHR T, JUPKE A, KLANKERMAYER J, LIU L, de LORENZO V, NARANCIC T, NOGALES J, PERRIN R, POLLET E, PRIETO A, CASEY W, HAARMANN T, SARBU A, et al. MIXed plastics biodegradation and UPcycling using microbial communities:EU Horizon 2020 project MIX-UP started January 2020[J]. Environmental Sciences Europe, 2021, 33(1):99.
    [67] 祁庆生. 解塑再用-中欧合作项目"合成塑料降解转化微生物菌群"介绍[J]. 生物工程学报, 2021(10):3411-3413. QI QS. Plastics biodegradation and recycling-the introduction of China-Europe cooperation project "Synthetic microorganism communities for plastic degradation and transformation"[J]. Chinese Journal of Biotechnology, 2021(10):3411-3413 (in Chinese).
    [68] SKARIYACHAN S, TASKEEN N, KISHORE AP, KRISHNA BV, NAIDU G. Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene[J]. Journal of Environmental Management, 2021, 284:112030.
    [69] KANG D, JACQUIOD S, HERSCHEND J, WEI S, NESME J, SØRENSEN SJ. Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures[J]. Frontiers in Microbiology, 2019, 10:3010.
    [70] BLAIR EM, DICKSON KL, O'MALLEY MA. Microbial communities and their enzymes facilitate degradation of recalcitrant polymers in anaerobic digestion[J]. Current Opinion in Microbiology, 2021, 64:100-108.
    [71] QIAO Y, HU R, CHEN D, WANG L, WANG Z, YU H, FU Y, LI C, DONG Z, WENG YX, DU W. Fluorescence-activated droplet sorting of PET degrading microorganisms[J]. Journal of Hazardous Materials, 2022, 424(pt b):127417.
    [72] TAMOOR M, SAMAK NA, JIA YP, MUSHTAQ MU, SHER H, BIBI M, XING JM. Potential use of microbial enzymes for the conversion of plastic waste into value-added products:a viable solution[J]. Frontiers in Microbiology, 2021, 12:777727.
    [73] KIM DH, HAN DO, IN SHIM K, KIM JK, PELTON JG, RYU MH, JOO JC, HAN JW, KIM HT, KIM KH. One-pot chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine[J]. ACS Catalysis, 2021, 11(7):3996-4008.
    [74] WERNER AZ, CLARE R, MAND TD, PARDO I, RAMIREZ KJ, HAUGEN SJ, BRATTI F, DEXTER GN, ELMORE JR, HUENEMANN JD, PEABODY GLV, JOHNSON CW, RORRER NA, SALVACHÚA D, GUSS AM, BECKHAM GT. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440[J]. Metabolic Engineering, 2021, 67:250-261.
    [75] URBANEK AK, MIROŃCZUK AM, GARCÍA-MARTÍN A, SABORIDO A, de la MATA I, ARROYO M. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics[J]. Biochimica et Biophysica Acta Proteins and Proteomics, 2020, 1868(2):140315.
    Related
    Cited by
Get Citation

WEI Yi, XIAO Yunjie, YANG Haitao, WANG Zefang. Polyethylene terephthalate hydrolase IsPETase and its application prospect. [J]. Acta Microbiologica Sinica, 2023, 63(1): 15-29

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 11,2022
  • Revised:May 09,2022
  • Online: January 13,2023
  • Published: January 04,2023
Article QR Code