Adsorption properties of lead and cadmium by Aureobasidium pullulans JB16
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [48]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] To isolate and identify a heavy metal-resistant strain in the polluted soil and explore the factors influencing the adsorption of the strain for lead and cadmium under different conditions. [Methods] The strain was identified based on physiological and biochemical characteristics and ITS sequence. The streak plate method was employed to determine the maximum lead and cadmium tolerance of the strain and to explore the optimal conditions for the adsorption of lead and cadmium. The adsorption process was studied by pseudo-second-order kinetics, Langmuir and Freundlich models, and infrared spectroscopy. [Results] Strain JB16 was isolated and identified as Aureobasidium pullulans, which can tolerate the maximum lead concentration of 1 500 mg/L, the maximum cadmium concentration of 750 mg/L, and the maximum lead-cadmium mixture concentration of 1 500 mg/L and 300 mg/L, respectively. The single factor experiments (temperature, time, cell age, pH, wet mycelial concentration, and initial heavy metal concentration) optimized the lead adsorption conditions as follows: 30 ℃, 2 h, cell age of 72 h, pH 6, wet mycelial concentration of 5 g/L, and initial lead concentration of 150 mg/L, under which the adsorption rate of lead was 88.5%. The optimum conditions for cadmium adsorption: 30 ℃, 1 h, cell age of 96 h, pH 6, wet mycelial concentration of 5 g/L, and initial cadmium concentration of 20 mg/L, under which the adsorption rate of cadmium was 59.4%. The adsorption process of lead and cadmium by the strain conformed to the Langmuir model and the pseudo-second-order kinetic model, which indicated surface monolayer adsorption. The results of scanning electron microscopy and infrared spectroscopy demonstrated that the heavy metal ions changed the morphology of the strain, and the hydroxyl, carboxyl, saturated C-H bonds, and amide groups on the cell surface participated in the adsorption. [Conclusion] Strain JB16 can adsorb lead and cadmium, which enriches the strain resources and provides data support for the remediation of water and soil contaminated by lead and cadmium.

    Reference
    [1] Meharg AA, Meharg C. The pedosphere as a sink, source, and record of anthropogenic and natural arsenic atmospheric deposition[J]. Environmental Science & Technology, 2021, 55(12):7757-7769.
    [2] REN YX, LUO Q, ZHUO SJ, HU YA, SHEN GF, CHENG HF, TAO S. Bioaccessibility and public health risk of heavy Metal(loid)s in the airborne particulate matter of four cities in Northern China[J]. Chemosphere, 2021, 277:130312.
    [3] SIMMATIS B, RÜHLAND KM, EVANS M, MEYER-JACOB C, KIRK J, MUIR DCG, SMOL JP. Metal contamination in alkaline Phantom Lake (Flin Flon, Manitoba, Canada) generates strong responses in multiple paleolimnological proxies[J]. Science of the Total Environment, 2022, 811:152299.
    [4] Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J. Impact of heavy metals on the environment and human health:novel therapeutic insights to counter the toxicity[J]. Journal of King Saud University-Science, 2022, 34(3):101865.
    [5] QIN GW, NIU ZD, YU JD, LI ZH, MA JY, XIANG P. Soil heavy metal pollution and food safety in China:effects, sources and removing technology[J]. Chemosphere, 2021, 267:129205.
    [6] LI CF, ZHOU KH, QIN WQ, TIAN CJ, QI M, YAN XM, HAN WB. A review on heavy metals contamination in soil:effects, sources, and remediation techniques[J]. Soil and Sediment Contamination:an International Journal, 2019, 28(4):380-394.
    [7] HOU DY, O'CONNOR D, IGALAVITHANA AD, ALESSI DS, LUO J, TSANG DCW, SPARKS DL, YAMAUCHI Y, RINKLEBE J, OK YS. Metal contamination and bioremediation of agricultural soils for food safety and sustainability[J]. Nature Reviews Earth & Environment, 2020, 1(7):366-381.
    [8] RAJENDRAN S, PRIYA TAK, KHOO KS, HOANG TKA, NG HS, MUNAWAROH HSH, KARAMAN C, OROOJI Y, SHOW PL. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils[J]. Chemosphere, 2022, 287:132369.
    [9] 张力, 袁婷婷, 汪溪远, 吴维, 马玉. 生物表面活性剂修复重金属污染土壤的研究进展[J]. 新疆大学学报(自然科学版), 2019, 36(2):198-202. ZHANG L, Yuan TT, Wang XY, Wu W, Ma Y. Research progress on biosurfactants for repairing heavy metal contaminated soil[J]. Journal of Xinjiang University:Natural Science Edition, 2019, 36(2):198-202 (in Chinese).
    [10] 武越. 土壤重金属污染修复技术的研究进展[J]. 化工管理, 2020(31):51-52. WU Y. Research progress of remediation technology of heavy metal pollution in soil[J]. Chemical Enterprise Management, 2020(31):51-52 (in Chinese).
    [11] WUANA RA, OKIEIMEN FE. Heavy metals in contaminated soils:a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011, 2011:1-20.
    [12] TAYANG A, SONGACHAN LS. Microbial bioremediation of heavy metals[J]. Current Science, 2021, 120(6):1013.
    [13] RAHMAN Z, SINGH VP. Bioremediation of toxic heavy metals (THMs) contaminated sites:Concepts, applications and challenges[J]. Environmental Science and Pollution Research, 2020, 27(22):27563-27581.
    [14] 尹敬群, 田君. 微生物吸附金属离子研究与发展[J]. 生物化工, 2016, 2(1):65-68. YIN JQ, TIAN J. Research and development on biosorption of metal ions[J]. Biological Chemical Engineering, 2016, 2(1):65-68 (in Chinese).
    [15] Ilyas S, Rehman A, Ilyas Q. Heavy metals induced oxidative stress in multi-metal tolerant yeast, Candida sp. PS33 and its capability to uptake heavy metals from wastewater[J]. Pakistan Journal of Zoology, 2017, 49(3):769-775.
    [16] 李丽杰, 贺银凤. 高吸附Pb2+的异常威客汉姆酵母QF-1-1吸附Pb2+特性及机理[J]. 食品科学, 2020, 41(10):152-158. LI LJ, HE YF. Adsorption characteristics and mechanism of Pb2+ by Wickerhamomyces anomalus QF-1-1, with high Pb2+ adsorption capacity[J]. Food Science, 2020, 41(10):152-158 (in Chinese).
    [17] 徐韶足, 王瑶, 毕文龙, 周珺, 陈雯莉. 一种改性微生物吸附剂的制备及其对镉离子的吸附特性[J]. 环境科学学报, 2021, 41(4):1342-1350. XU SZ, WANG Y, BI WL, ZHOU J, CHEN WL. Preparation of a modified microbial adsorbent and its adsorption characteristics for Cd2+[J]. Acta Scientiae Circumstantiae, 2021, 41(4):1342-1350 (in Chinese).
    [18] WANG YJ, YI BZ, SUN XW, YU L, WU LH, LIU WX, WANG DC, LI YL, JIA R, YU H, LI XZ. Removal and tolerance mechanism of Pb by a filamentous fungus:a case study[J]. Chemosphere, 2019, 225:200-208.
    [19] 丁翰林. 真菌黑曲霉(Aspergillus niger)对U(Ⅵ)的吸附富集与机理研究[D]. 绵阳:西南科技大学硕士学位论文, 2019. DING HL. Study on adsorption and enrichment mechanism of U(Ⅵ)by Aspergillus niger[D]. Mianyang:Master's Thesis of Southwest University of Science and Technology, 2019 (in Chinese)
    [20] JIN ZM, DENG SQ, WEN YC, JIN YF, PAN L, ZHANG YF, BLACK T, JONES KC, ZHANG H, ZHANG DY. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils[J]. The Science of the Total Environment, 2019, 697:134148.
    [21] 姜敏. 啤酒酵母和胶质芽孢杆菌对Cd2+、Zn2+吸附特性及机理的研究[D]. 沈阳:东北大学硕士学位论文, 2009. JIANG M. Study on biosorption characteristics and mechanism of Cd2+, Zn2+ by Saccharomyces cerevisiae and Bacillus glial[D]. Shenyang:Master's Thesis of Northeastern University, 2009 (in Chinese)
    [22] 张旭辉, 孙斌, 魏志敏, 赵晨雨, 徐源洲, 张力浩, 徐莉. 2株耐镉微生物的筛选及其对镉的吸附钝化差异机制[J]. 南京农业大学学报, 2019, 42(5):869-876. ZHANG XH, SUN B, WEI ZM, ZHAO CY, XU YZ, ZHANG LH, XU L. Screening of two cadmium tolerant microorganisms and their differences in adsorption and immobilization of cadmium[J]. Journal of Nanjing Agricultural University, 2019, 42(5):869-876 (in Chinese).
    [23] 李丹. 耐铅、镉真菌的筛选鉴定及促进芦苇修复污染土壤的效果分析[D]. 齐齐哈尔:齐齐哈尔大学硕士学位论文, 2016. LI D. Isolation of lead-and cadmium-resistant funges and analysis the effects in promoting the remediation of contaminated soil with Phragmites australis[D]. Qiqihaer:Master's Thesis of Qiqihar University, 2016 (in Chinese)
    [24] 杜连祥, 路福平. 微生物学实验技术[M]. 北京:中国轻工业出版社, 2005. DU LX, LU FP. Microbiology Experimental Technology[M]. Beijing:China Light Industry Press, 2005 (in Chinese).
    [25] 解琳, 郝宇, 齐欣, 刘本松, 温昱晨, 刘丽杰, 杨晓杰, 金忠民. 一株耐铅镉真菌的分离鉴定及其吸附特性的研究[J]. 微生物学报, 2020, 60(4):780-788. XIE L, HAO Y, QI X, LIU BS, WEN YC, LIU LJ, YANG XJ, JIN ZM. Isolation, identification and biosorption characteristics of a lead and cadmium resistant fungus[J]. Acta Microbiologica Sinica, 2020, 60(4):780-788 (in Chinese).
    [26] 车驰, 张秀芳, 赵兴敏, 李明堂. 拉恩氏菌LRP3对Cu2+的吸附特征[J]. 吉林农业大学学报, 2022, 44(3):352-358. CHE C, ZHANG XF, ZHAO XM, LI MT. Adsorption characteristics of Cu2+ by Rahnella sp. LRP3[J]. Journal of Jilin Agricultural University, 2022, 44(3):352-358 (in Chinese).
    [27] 江澜, 闵燕, 叶便达, 贾朝刚, 李越, 陈浩然, 常海军. 利用潜在生物吸附剂从水体系中去除有毒重金属[J]. 应用化工, 2021, 50(1):194-199, 203. JIANG L, MIN Y, YE BD, JIA CG, LI Y, CHEN HR, CHANG HJ. Elimination of toxic heavy metals from aqueous systems using potential biosorbents[J]. Applied Chemical Industry, 2021, 50(1):194-199, 203 (in Chinese).
    [28] 甘雨. 乳杆菌吸附重金属镉的特性分析[D]. 无锡:江南大学硕士学位论文, 2020. GAN Y. Characteristic analysis of Lactobacillus adsorbing cadmium[D]. Wuxi:Master's Thesis of Jiangnan University, 2020 (in Chinese)
    [29] 袁梦, 沈宗泽, 封磊, 宋萍, 韩晓刚, 游凯, 苏丹, 李航. 一株耐锌细菌Sphingobacterium caeni S3的Zn2+吸附特征[J]. 福建农林大学学报(自然科学版), 2019, 48(5):656-663. YUAN M, SHEN ZZ, FENG L, SONG P, HAN XG, YOU K, SU D, LI H. Zinc adsorption characteristics of a zinc-resistant bacterium Sphingobacterium caeni S3[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2019, 48(5):656-663 (in Chinese).
    [30] 章雨卉, 吕磊磊, 陈林杰, 魏培莲. 培养基成分和培养条件对出芽短梗霉ZUST-I13产聚苹果酸的影响[J]. 发酵科技通讯, 2020, 49(1):7-10. ZHANG YH, LYU LL, CHEN LJ, WEI PL. Effects of medium ingredients and culture conditions on the production of poly-malic acid by Aureobasidium pullulans ZUST-I13[J]. Bulletin of Fermentation Science and Technology, 2020, 49(1):7-10 (in Chinese).
    [31] WEI PL, CHENG C, LIN M, ZHOU YP, YANG ST. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans:kinetics and process economics[J]. Bioresource Technology, 2017, 224:581-589.
    [32] REN YY, ZHU ZY, DONG FY, SONG QY. Screening, characteristics and mechanism of Cd-tolerance Cunninghamella bertholletiae[J]. Journal of Cleaner Production, 2018, 191:480-489.
    [33] PUGAZHENDHI A, RANGANATHAN K, KALIANNAN T. Biosorptive removal of copper(II) by Bacillus cereus isolated from contaminated soil of electroplating industry in India[J]. Water, Air, & Soil Pollution, 2018, 229(3):76.
    [34] 赵晓峰. 耐铅乳酸菌分离鉴定、吸附特性及机理的研究[D]. 呼和浩特:内蒙古农业大学博士学位论文, 2019. ZHAO XF. Study on isolation, identification, adsorption characteristics and mechanism of lead-resistant lactic acid bacteria[D]. Hohhot:Doctoral Dissertation of Inner Mongolia Agricultural University, 2019 (in Chinese)
    [35] 陈志英, 王磊, 周琪. 菌龄对恶臭假单胞菌吸附铜离子能力的影响[J]. 中国环境科学, 2006, 26(S1):97-101. CHEN ZY, WANG L, ZHOU Q. Studies on the Cu2+ adsorption capacity of Pseudomonas putida 5-x membranes with different cell ages[J]. China Environmental Science, 2006, 26(S1):97-101 (in Chinese).
    [36] 李新琦, 温沁雪, 王琼, 王进, 陈志强. 处理电镀废水的耐铜功能菌的筛选及吸附性能[J]. 哈尔滨工业大学学报, 2016, 48(8):108-114. LI XQ, WEN QX, WANG Q, WANG J, CHEN ZQ. Isolation of Cu2+ tolerant bacteria used in electroplating wastewater treatment and their biosorption performance[J]. Journal of Harbin Institute of Technology, 2016, 48(8):108-114 (in Chinese).
    [37] 周赓, 杨辉, 潘虎, 王翀, 付复华, 卢向阳, 田云. 一株耐镉链霉菌的筛选、鉴定与基本特性分析[J]. 环境科学学报, 2017, 37(6):2076-2084. ZHOU G, YANG H, PAN H, WANG C, FU FH, LU XY, TIAN Y. Isolation, identification and characteristics of a cadmium tolerant Streptomyces strain[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2076-2084 (in Chinese).
    [38] HALTTUNEN T, COLLADO MC, EL-NEZAMI H, MERILUOTO J, SALMINEN S. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution[J]. Letters in Applied Microbiology, 2008, 46(2):160-165.
    [39] RIZVI A, AHMED B, ZAIDI A, KHAN MS. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents:an efficient metal clean-up strategy[J]. Environmental Monitoring and Assessment, 2020, 192(12):801.
    [40] 余雪梅. 耐镉芽孢杆菌对Cd2+的吸附特性及其机理研究[D]. 成都:成都理工大学硕士学位论文, 2019. YU XM. Characterization and mechanism of Cd2+ adsorption by cadmium-tolerant Bacillus sp. strain PFYN01[D]. Chengdu:Master's Thesis of Chengdu University of Technology, 2019 (in Chinese)
    [41] TU C, LIU Y, WEI J, LI LZ, SCHECKEL KG, LUO YM. Characterization and mechanism of copper biosorption by a highly copper-resistant fungal strain isolated from copper-polluted acidic orchard soil[J]. Environmental Science and Pollution Research, 2018, 25(25):24965-24974.
    [42] 任志彤. Penicillium sp. PC1去除重金属铅镉的研究[D]. 北京:中国地质大学(北京)硕士学位论文, 2021. REN ZT. Study on removal of heavy metal lead and cadmium by Penicillium sp. PC1[D]. Beijing:Master's Thesis of China University of Geosciences, 2021 (in Chinese)
    [43] 燕传明. 重金属抗性细菌对水体中铅镉的吸附特性和机理研究[D]. 南京:南京农业大学硕士学位论文, 2018. Yan CM. The adsorption characteristics of lead and cadmium by two heavy metal resistant bacteria strains and their mechanism in aqueous solutions[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2018 (in Chinese)
    [44] 罗鹏林, 张然然, 师莉升, 郑进, 康薇. 黑曲霉菌株TLSF2对水中Cu、Cd的吸附机理探讨[J]. 湖北农业科学, 2017, 56(13):2429-2433, 2579. LUO PL, ZHANG RR, SHI LS, ZHENG J, KANG W. Discussion on the absorption mechanism of Aspergillus niger TLSF2 strain to copper and cadmium in water[J]. Hubei Agricultural Sciences, 2017, 56(13):2429-2433, 2579 (in Chinese).
    [45] RAHMAN Z, THOMAS L, SINGH VP. Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2[J]. Journal of Basic Microbiology, 2019, 59(5):477-486.
    [46] WANG TQ, YAO J, YUAN ZM, ZHAO Y, WANG F, CHEN HL. Isolation of lead-resistant Arthrobactor strain GQ-9 and its biosorption mechanism[J]. Environmental Science and Pollution Research, 2018, 25(4):3527-3538.
    [47] 王建才, 刘兴华, 王怀中, 呼红梅, 庞丽丽, 黄保华, 朱荣生. 耐铅镉菌株的分离鉴定及其吸附能力[J]. 生物工程学报, 2020, 36(8):1600-1609. WANG JC, LIU XH, WANG HZ, HU HM, PANG LL, HUANG BH, ZHU RS. Isolation, identification and heavy metals biosorption of a lead and cadmium-tolerant strain[J]. Chinese Journal of Biotechnology, 2020, 36(8):1600-1609 (in Chinese).
    [48] CHOIŃSKA-PULIT A, SOBOLCZYK-BEDNAREK J, ŁABA W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design[J]. Ecotoxicology and Environmental Safety, 2018, 149:275-283.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIU Bo, XIE Lin, LI Chunyue, LIU Yuheng, YUAN Xinyue, JIN Zhongmin. Adsorption properties of lead and cadmium by Aureobasidium pullulans JB16. [J]. Acta Microbiologica Sinica, 2023, 63(1): 181-193

Copy
Share
Article Metrics
  • Abstract:317
  • PDF: 1007
  • HTML: 1062
  • Cited by: 0
History
  • Received:April 11,2022
  • Revised:June 14,2022
  • Online: January 13,2023
  • Published: January 04,2023
Article QR Code