Biological characteristics and probiotic effect of Loigolactobacillus coryniformis Lc7
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] To characterize the Loigolactobacillus coryniformis Lc7 isolated from feces of healthy adults and evaluate its probiotic effect. [Methods] Phylogenetic tree was constructed based on the 16S rRNA gene and the core genes of the genome for taxonomic identification of the strain. The tolerance to acid, bile salt tolerance, adhesion, antioxidant activity, and antibacterial activity were tested, and the hemolysis, gelatinase activity, and antimicrobial susceptibility of Lc7 were examined to evaluate the probiotic property. In addition, ulcerative colitis was induced in mice to assess the in vivo anti-inflammatory potential of the strain. [Results] Lc7 was identified as L. coryniformis. The survival rate of this strain was up to 70.17% at pH 3.0 and in the presence of 0.3% bile salt. The adhesion index of Lc7 to HT-29 cells was 56.33 CFU/cell while self-aggregation and hydrophobicity were 80% and 40%, respectively. Lc7 inhibited the growth of seven common pathogens including Shigella flexneri and Salmonella typhimurium. Moreover, it scavenged 91.70% and 48.53% of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and hydroxyl radicals (·OH), respectively. Lc7 showed no hemolysis or gelatinase activity and was sensitive to the antibiotics tested. In the experiment on colitis mice, Lc7 group had longer colons than the model group (P<0.01). In addition, Lc7 alleviated colonic lesions (P<0.01), decreased serum pro-inflammatory cytokines TNF-α and IL-1β, and increased serum anti-inflammatory cytokines IL-10 (P<0.01). [Conclusion] Lc7 has probiotic and anti-inflammatory properties, which can be further developed as a probiotic.

    Reference
    [1] 乳杆菌属分类学地位变迁后菌种名称英解汉译检索表(一)[J]. 食品与发酵工业, 2020, 46(15):318-324. A key to the English-Chinese translation of the names of Lactobacillus after the change of its taxonomic status (I)[J]. Food and Fermentation Industries, 2020, 46(15):318-324 (in Chinese).
    [2] ZHENG JS, WITTOUCK S, SALVETTI E, FRANZ CMAP, HARRIS HMB, MATTARELLI P, O'TOOLE PW, POT B, VANDAMME P, WALTER J, WATANABE K, WUYTS S, FELIS GE, GÄNZLE MG, LEBEER S. A taxonomic note on the genus Lactobacillus:description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(4):2782-2858.
    [3] XU XQ, PENG Q, ZHANG YW, TIAN DD, ZHANG PB, HUANG Y, MA L, QIAO Y, SHI B. A novel exopolysaccharide produced by Lactobacillus coryniformis NA-3 exhibits antioxidant and biofilm-inhibiting properties in vitro[J]. Food & Nutrition Research, 2020, 64:10.29219.
    [4] WANG T, ZHANG LS, WANG PP, LIU YL, WANG GT, SHAN YY, YI YL, ZHOU Y, LIU BF, WANG X, LÜ X. Lactobacillus coryniformis MXJ32 administration ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated colorectal cancer via reshaping intestinal microenvironment and alleviating inflammatory response[J]. European Journal of Nutrition, 2022, 61(1):85-99.
    [5] BUKHARI SA, SALMAN M, NUMAN M, JAVED MR, ZUBAIR M, MUSTAFA G. Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water[J]. Molecular Biology Reports, 2020, 47(3):1871-1881.
    [6] TORRES AC, VANNINI V, BONACINA J, FONT G, SAAVEDRA L, TARANTO MP. Cobalamin production by Lactobacillus coryniformis:biochemical identification of the synthetized corrinoid and genomic analysis of the biosynthetic cluster[J]. BMC Microbiology, 2016, 16(1):240.
    [7] FANG F, FENG TT, DU GC, CHEN J. Evaluation of the impact on food safety of a Lactobacillus coryniformis strain from pickled vegetables with degradation activity against nitrite and other undesirable compounds[J]. Food Additives & Contaminants:Part A, 2016, 33(4):623-630.
    [8] HILL C, GUARNER F, REID G, GIBSON GR, MERENSTEIN DJ, POT B, MORELLI L, CANANI RB, FLINT HJ, SALMINEN S, CALDER PC, SANDERS ME. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews Gastroenterology & Hepatology, 2014, 11(8):506-514.
    [9] SONG W, SONG C, LI L, WANG TY, HU JH, ZHU LN, YUE TL. Lactobacillus alleviated obesity induced by high-fat diet in mice[J]. Journal of Food Science, 2021, 86(12):5439-5451.
    [10] LARA-VILLOSLADA F, SIERRA S, BOZA J, XAUS J, OLIVARES M. Beneficial effects of consumption of a dairy product containing two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714 in healthy children[J]. Nutricion Hospitalaria, 2007, 22(4):496-502.
    [11] TORAL M, GÓMEZ-GUZMÁN M, JIMÉNEZ R, ROMERO M, SÁNCHEZ M, UTRILLA MP, GARRIDO-MESA N, RODRÍGUEZ-CABEZAS ME, OLIVARES M, GÁLVEZ J, DUARTE J. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice[J]. Clinical science:London, England:1979, 2014, 127(1):33-45.
    [12] YANG J, PU J, LU S, BAI X, WU Y, JIN D, CHENG Y, ZHANG G, ZHU W, LUO X, ROSSELLÓ-MÓRA R, XU J. Species-level analysis of human gut microbiota with metataxonomics[J]. Frontiers in Microbiology, 2020, 11:2029.
    [13] LUO RB, LIU BH, XIE YL, LI ZY, HUANG WH, YUAN JY, HE GZ, CHEN YX, PAN Q, LIU YJ, TANG JB, WU GX, ZHANG H, SHI YJ, LIU Y, YU C, WANG B, LU Y, HAN CL, CHEUNG DW, et al. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1):18.
    [14] PRJIBELSKI A, ANTIPOV D, MELESHKO D, LAPIDUS A, KOROBEYNIKOV A. Using SPAdes de novo assembler[J]. Current Protocols in Bioinformatics, 2020, 70(1):e102.
    [15] JACKMAN SD, VANDERVALK BP, MOHAMADI H, CHU J, YEO S, HAMMOND SA, JAHESH G, KHAN H, COOMBE L, WARREN RL, BIROL I. ABySS 2.0:resource-efficient assembly of large genomes using a Bloom filter[J]. Genome Research, 2017, 27(5):768-777.
    [16] LIN SH, LIAO YC. CISA:contig integrator for sequence assembly of bacterial genomes[J]. PLoS One, 2013, 8(3):e60843.
    [17] TOHNO M, KITAHARA M, IRISAWA T, MASUDA T, UEGAKI R, OHKUMA M, TAJIMA K. Description of Lactobacillus iwatensis sp. nov., isolated from orchardgrass (Dactylis glomerata L.) silage, and Lactobacillus backii sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_10):3854-3860.
    [18] HYATT D, CHEN GL, LOCASCIO PF, LAND ML, LARIMER FW, HAUSER LJ. Prodigal:prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11:119.
    [19] NIU LN, HU SK, LU S, LAI XH, YANG J, JIN D, RAO LY, LU G, XU JG. Isolation and characterization of Streptococcus respiraculi sp. nov. from Marmota himalayana (Himalayan marmot) respiratory tract[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(6):2082-2087.
    [20] FU LM, NIU BF, ZHU ZW, WU ST, LI WZ. CD-HIT:accelerated for clustering the next-generation sequencing data[J]. Bioinformatics:Oxford, England, 2012, 28(23):3150-3152.
    [21] KATOH K, STANDLEY DM. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4):772-780.
    [22] PRICE MN, DEHAL PS, ARKIN AP. FastTree:computing large minimum evolution trees with profiles instead of a distance matrix[J]. Molecular Biology and Evolution, 2009, 26(7):1641-1650.
    [23] ZHU DL, LIU FL, XU HJ, BAI YL, ZHANG XM, SARIS PEJ, QIAO MQ. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8[J]. FEMS Microbiology Letters, 2015, 362(16):fnv107.
    [24] EBRAHIMI M, SADEGHI A, RAHIMI D, PURABDOLAH H, SHAHRYARI S. Postbiotic and anti-aflatoxigenic capabilities of Lactobacillus kunkeei as the potential probiotic LAB isolated from the natural honey[J]. Probiotics and Antimicrobial Proteins, 2021, 13(2):343-355.
    [25] HAN Q, KONG BH, CHEN Q, SUN FD, ZHANG H. In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics[J]. Journal of Functional Foods, 2017, 32:391-400.
    [26] HOJJATI M, BEHABAHANI BA, FALAH F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus[J]. Microbial Pathogenesis, 2020, 147:104420.
    [27] BAI L, XIA SL, LAN RT, LIU LY, YE CY, WANG YT, JIN D, CUI ZG, JING HQ, XIONG YW, BAI XM, SUN H, ZHANG J, WANG L, XU JG. Isolation and characterization of cytotoxic, aggregative Citrobacter freundii[J]. PLoS One, 2012, 7(3):e33054.
    [28] CHEN P, ZHANG QX, DANG H, LIU XM, TIAN FW, ZHAO JX, CHEN YQ, ZHANG H, CHEN W. Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity[J]. Food Control, 2014, 35(1):65-72.
    [29] 徐洪涛. 类植物乳杆菌所产活性物质LPX-600的研究[D]. 大连:大连理工大学硕士学位论文, 2006. XU HT. Studied of antimicrobiol substance LPX-600 produced by Lactobacillus paraplantarum X-600[D]. Dalian:Masterʼs Thesis of Dalian University of Technology, 2006 (in Chinese).
    [30] ANGMO K, KUMARI A578.VITRI, BHALLA TC. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh[J]. LWT-Food Science and Technology, 2016, 66:428-435.
    [31] RIBEIRO SC, COELHO MC, TODOROV SD, FRANCO BDGM, DAPKEVICIUS MLE, SILVA CCG. Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cowʼs milk cheese[J]. Journal of Applied Microbiology, 2014, 116(3):573-585.
    [32] ZHANG F, LI Y, WANG XL, WANG SP, BI DR. The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis[J]. BioMed Research International, 2019, 2019:3921315.
    [33] JORGENSEN J, CLINICAL. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline M45. Wayne, PA 19087 USA:Clinical and Laboratory Standards Institute, 2015.
    [34] BIAN XY, WU WR, YANG LY, LV LX, WANG Q, LI YT, YE JZ, FANG DQ, WU JJ, JIANG XW, SHI D, LI LJ. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice[J]. Frontiers in Microbiology, 2019, 10:2259.
    [35] DELDAY M, MULDER I, LOGAN ET, GRANT G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of Crohnʼs disease[J]. Inflammatory Bowel Diseases, 2019, 25(1):85-96.
    [36] 姚纲, 张健鹏, 胡红焱, 梁慧. 棒状乳杆菌SZD菌株发酵液抑菌活性的初步研究[J]. 国外医药:抗生素分册, 2014, 35(5):221-222, 238. YAO G, ZHANG JP, HU HY, LIANG H. Liquid antibacterial activity preliminary study of Lactobacillus rod SZD fermentation[J]. World Notes on Antibiotics, 2014, 35(5):221-222, 238 (in Chinese).
    [37] GROVER S, RAJPUT Y, DUARY R, BATISH V. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells[J]. The Indian Journal of Medical Research, 2011, 134(5):664.
    [38] WIRTZ S, POPP V, KINDERMANN M, GERLACH K, WEIGMANN B, FICHTNER-FEIGL S, NEURATH MF. Chemically induced mouse models of acute and chronic intestinal inflammation[J]. Nature Protocols, 2017, 12(7):1295-1309.
    [39] LIU L, LIU YL, LIU GX, CHEN X, YANG K, YANG YX, XIE Q, GAN HK, HUANG XL, GAN HT. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway[J]. International Immunopharmacology, 2013, 17(2):314-320.
    [40] 杨明, 侯敢, 黄迪南. 明胶酶与恶性肿瘤[J]. 现代肿瘤医学, 2008, 16(1):130-133. YANG M, HOU G, HUANG DN. Gelatinase and malignant tumor[J]. Journal of Modern Oncology, 2008, 16(1):130-133 (in Chinese).
    [41] DAVOREN MJ, LIU J, CASTELLANOS J, RODRÍGUEZ-MALAVÉ NI, SCHIESTL RH. A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period[J]. Gut Microbes, 2019, 10(4):458-480.
    [42] THAO TTP, THOA LTK, NGOC LMT, LAN TTP, PHUONG TV, TRUONG HTH, KHOO KS, MANICKAM S, HOA TT, TRAM NDQ, SHOW PL, HUY ND. Characterization halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evaluation for bacterial pathogens inhibition[J]. Chemical Engineering and Processing-Process Intensification, 2021, 168:108576.
    [43] HAN JZ, MENG XJ, SHEN H, LUO WB, YAO SY, YANG J, ZHU QX, TIAN YQ, WANG SY. Purification, molecular characterization of Lactocin 63 produced by Lactobacillus coryniformis FZU63 and its antimicrobial mode of action against Shewanella putrefaciens[J]. Applied Microbiology and Biotechnology, 2021, 105(18):6921-6930.
    [44] 党静. 杨凌浆水中棒状乳杆菌XN8细菌素的分离纯化及其特性研究[D]. 杨凌:西北农林科技大学硕士学位论文, 2014. DANG J. Urification and characterization of bacteriocin produced by Lactobacillus coryniformis XN8Isolated from Jiangshui[D]. Yangling:Master's Thesis of Northwest A&F University, 2014 (in Chinese).
    [45] LI Y, LIU M, ZHOU J, HOU B, SU X, LIU Z, YUAN J, LI M. Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice[J]. Beneficial Microbes, 2019, 10(5):543-553.
    [46] COHEN PA. Probiotic safety-No guarantees[J]. JAMA Internal Medicine, 2018, 178(12):1577-1
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Suping, LIN Xiaoying, XU Mingchao, QIAO Lei, YANG Jing, SUN Hui, ZHANG Gui, LIU Liyun, XU Jianguo. Biological characteristics and probiotic effect of Loigolactobacillus coryniformis Lc7. [J]. Acta Microbiologica Sinica, 2023, 63(1): 319-332

Copy
Share
Article Metrics
  • Abstract:398
  • PDF: 1173
  • HTML: 767
  • Cited by: 0
History
  • Received:April 28,2022
  • Revised:July 05,2022
  • Online: January 13,2023
  • Published: January 04,2023
Article QR Code