Functions of genes involved in polyglutamic acid synthesis in Bacillus subtilis
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Polyglutamic acid, as a natural multifunctional polymer, has become a research hotspot in recent years. Microbial fermentation is currently an effective way to produce polyglutamic acid which is difficult to be synthesized by chemical methods. [Objective] To explore the roles of degS, degQ, degU, swrA, rocA, and putM genes in the polyglutamic acid synthesis of Bacillus subtilis and realize the regulation of the synthesis pathway through molecular modification. [Methods] The genetically engineered B. subtilis strains were constructed by knocking out degS, degQ, and degU or overexpressing swrA, rocA, and putM, respectively. The key nodes in the synthesis pathway were analyzed based on the content change of extracellular polyglutamic acid secreted by the engineered strains. [Results] In shake flask culture, the extracellular polyglutamic acid contents of the recombinant strains B. subtilis 168-swrA, 168-rocA, and 168-putM were 1.28, 1.47, and 1.37 times that of the original strain, respectively; the extracellular polyglutamic acid contents of B. subtilis 168-△degS, 168-△degQ, and 168-△degU were 1.01, 0.98 and 0.94 times that of the original strain, respectively. In static culture, B. subtilis 168-degU could not form an intact biofilm, and the biofilm formation of B. subtilis 168-degS, 168-degQ, 168-swrA, 168-rocA, and 168-putM was 1.48, 1.31, 1.77, 2.59, and 2.16 times that of the original strain, respectively. The extracellular protein content was positively correlated with the biofilm formation. [Conclusion] The deletion of degS, degQ, and degU did not significantly affect the synthesis of polyglutamic acid, while the overexpression of swrA, rocA, and putM significantly improved the ability of B. subtilis to synthesize polyglutamic acid.

    Reference
    [1] YANG F, LIU N, CHEN YZ, WANG S, LIU J, ZHAO L, MA X, CAI DB, CHEN SW. Rational engineering of cofactor specificity of glutamate dehydrogenase for poly-γ-glutamic acid synthesis in Bacillus licheniformis[J]. Enzyme and Microbial Technology, 2022, 155:109979.
    [2] ZHANG Q, CHEN YZ, GAO L, CHEN JG, MA X, CAI DB, WANG D, CHEN SW. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis[J]. Synthetic and Systems Biotechnology, 2022, 7(1):567-573.
    [3] 耿鹏, 吴坤, 蔡亚慧, 张继冉. γ-聚谷氨酸的合成及应用[J]. 许昌学院学报, 2019, 38(5):92-95. GENG P, WU K, CAI YH, ZHANG JR. Synthesis and application of γ-polyglutamic acid[J]. Journal of Xuchang University, 2019, 38(5):92-95 (in Chinese).
    [4] 吴永平. 枯草芽胞杆菌固态发酵产聚-γ-谷氨酸的工艺优化[D]. 武汉:华中农业大学硕士学位论文, 2007. WU YP. Optimization of solid state fermentation of poly-γ-glutamic acid by Bacillus subtilis ME714[D]. Wuhan:Master's Thesis of Huazhong Agricultural University, 2007 (in Chinese)
    [5] HALMSCHLAG B, PUTRI SP, FUKUSAKI E, BLANK LM. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source:A metabolomic analysis[J]. Journal of Bioscience and Bioengineering, 2020, 130(3):272-282.
    [6] WOJTOWICZ K, STELIGA T, KAPUSTA P, BRZESZCZ J, SKALSKI T. Evaluation of the effectiveness of the biopreparation in combination with the polymer γ-PGA for the biodegradation of petroleum contaminants in soil[J]. Materials:Basel, Switzerland, 2022, 15(2):400.
    [7] TAMURA M, HORI S, INOSE A, KOBORI M. Effects of γ-polyglutamic acid on blood glucose and caecal short chain fatty acids in adult male mice[J]. Food and Nutrition Sciences, 2020, 11(1):8-22.
    [8] HALMSCHLAG B, STEURER X, PUTRI SP, FUKUSAKI E, BLANK LM. Tailor-made poly-γ-glutamic acid production[J]. Metabolic Engineering, 2019, 55:239-248.
    [9] GAO WX, HE YL, ZHANG F, ZHAO FJ, HUANG C, ZHANG YT, ZHAO Q, WANG SF, YANG C. Metabolic engineering of Bacillus amyloliquefaciens LL 3 for enhanced poly-γ-glutamic acid synthesis[J]. Microbial Biotechnology, 2019, 12(5):932-945.
    [10] CAI DB, CHEN YZ, HE PH, WANG SY, MO F, LI X, WANG Q, NOMURA CT, WEN ZY, MA X, CHEN SW. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis[J]. Biotechnology and Bioengineering, 2018, 115(10):2541-2553.
    [11] OJIMA Y, KOBAYASHI J, DOI T, AZUMA M. Knockout of pgdS and ggt gene changes poly-γ-glutamic acid production in Bacillus licheniformis RK14-46[J]. Journal of Biotechnology, 2019, 304:57-62.
    [12] XU GQ, ZHA J, CHENG H, IBRAHIM MHA, YANG F, DALTON H, CAO R, ZHU YX, FANG JH, CHI KJ, ZHENG P, ZHANG XM, SHI JS, XU ZH, GROSS RA, KOFFAS MAG. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid[J]. Metabolic Engineering, 2019, 56:39-49.
    [13] SAWADA K, ARAKI H, TAKIMURA Y, MASUDA K, KAGEYAMA Y, OZAKI K, HAGIHARA H. Poly-l-gamma-glutamic acid production by recombinant Bacillus subtilis without pgsA gene[J]. AMB Express, 2018, 8(1):110.
    [14] 苏畅. 功能角蛋白制备用酶在Bacillus subtilis中的高效表达与改造[D]. 无锡:江南大学博士学位论文, 2021. SU C. Efficient expression and modification of keratinase in Bacillus subtilis for functional keratin preparation[D]. Wuxi:Doctoral Dissertation of Jiangnan University, 2021 (in Chinese)
    [15] 容艳筠, 邓毛程. 纳豆芽孢杆菌在食品中的研究现状和应用进展[J]. 技术与市场, 2017, 24(7):146-147. RONG YY, DENG MC. Research status and application progress of Bacillus natto in food[J]. Technology and Market, 2017, 24(7):146-147 (in Chinese).
    [16] DONG XM, LI N, LIU ZM, LV XQ, LI JH, DU GC, WANG M, LIU L. Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis[J]. Biotechnology for Biofuels, 2019, 12:212.
    [17] SIERRO N, MAKITA Y, de HOON M, NAKAI KT. DBTBS:a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information[J]. Nucleic Acids Research, 2008, 36(suppl_1):D93-D96.
    [18] ZHU BY, STÜLKE J. SubtiWiki in 2018:from genes and proteins to functional network annotation of the model organism Bacillus subtilis[J]. Nucleic Acids Research, 2018, 46(D1):D743-D748.
    [19] LI BC, CAI DB, HU SY, ZHU AT, HE ZL, CHEN SW. Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Bacillus licheniformis △1-pyrroline-5-carboxylate dehydrogenase gene ycgN-deficient strain[J]. Applied Microbiology and Biotechnology, 2018, 102(23):10127-10137.
    [20] SIRISANSANEEYAKUL S, CAO MF, KONGKLOM N, CHUENSANGJUN C, SHI ZP, CHISTI Y. Microbial production of poly-γ-glutamic acid[J]. World Journal of Microbiology and Biotechnology, 2017, 33(9):173.
    [21] CAI DB, HE PH, LU XC, ZHU CJ, ZHU J, ZHAN YY, WANG Q, WEN ZY, CHEN SW. A novel approach to improve poly-γ-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02[J]. Scientific Reports, 2017, 7:43404.
    [22] ASHIUCHI M, SODA K, MISONO H. A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336:gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells[J]. Biochemical and Biophysical Research Communications, 1999, 263(1):6-12.
    [23] HAMON MA, LAZAZZERA BA. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis[J]. Molecular Microbiology, 2001, 42(5):1199-1209.
    [24] VERHAMME DT, MURRAY EJ, STANLEY-WALL NR. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis[J]. Journal of Bacteriology, 2009, 191(1):100-108.
    [25] DERGHAM Y, SANCHEZ-VIZUETE P, LE COQ D, DESCHAMPS J, BRIDIER A, HAMZE K, BRIANDET R. Comparison of the genetic features involved in Bacillus subtilis biofilm formation using multi-culturing approaches[J]. Microorganisms, 2021, 9(3):633.
    [26] OHSAWA T, TSUKAHARA K, OGURA M. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in γ-poly-glutamic acid synthesis[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(9):2096-2102.
    [27] OSERA C, AMATI G, CALVIO C, GALIZZI A. SwrAA activates poly-gamma-glutamate synthesis in addition to swarming in Bacillus subtilis[J]. Microbiology:Reading, England, 2009, 155(Pt 7):2282-2287.
    [28] WU J, LI W, ZHAO SG, QIAN SH, WANG Z, ZHOU MJ, HU WS, WANG J, HU LX, LIU Y, XUE ZL. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis[J]. Microbial Cell Factories, 2021, 20(1):113.
    [29] TAN SZ, PRATHER KL. Dynamic pathway regulation:recent advances and methods of construction[J]. Current Opinion in Chemical Biology, 2017, 41:28-35.
    [30] LIU YF, LIU L, LI JH, DU GC, CHEN J. Synthetic biology toolbox and chassis development in Bacillus subtilis[J]. Trends in Biotechnology, 2019, 37(5):548-562.
    [31] DONG XM, LI N, LIU ZM, LV XQ, SHEN Y, LI JH, DU GC, WANG M, LIU L. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis[J]. Journal of Agricultural and Food Chemistry, 2020, 68(8):2477-2484.
    [32] PAPENFORT K, BASSLER BL. Quorum sensing signal–response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14(9):576-588.
    [33] XIONG Q, LIU D, ZHANG HH, DONG XY, ZHANG GS, LIU YP, ZHANG RF. Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility[J]. Applied Microbiology and Biotechnology, 2020, 104(16):7177-7185.
    [34] LI HD, LI XY, SONG C, ZHANG YH, WANG ZL, LIU ZQ, WEI H, YU JL. Autoinducer-2 facilitates Pseudomonas aeruginosa PAO1 pathogenicity in vitro and in vivo[J]. Frontiers in Microbiology, 2017, 8:1944.
    [35] 谢晓荣, 尚道涵, 沈锡辉, 张磊. AI-2通过调节c-di-GMP代谢酶DosC影响类志贺邻单胞菌生物膜形成及运动性[J]. 微生物学报, 2022, 62(7):2808-2823. XIE XR, SHANG DH, SHEN XH, ZHANG L. AI-2 affects biofilm formation and motility of Plesiomonas shigelloides by regulating the c-di-GMP-metabolizing enzyme DosC[J]. Acta Microbiologica Sinica, 2022, 62(7):2808-2823 (in Chinese).
    [36] LV YK, QIAN S, DU GC, CHEN J, ZHOU JW, XU P. Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction[J]. Metabolic Engineering, 2019, 54:109-116.
    [37] 吴静, 李伟, 冯静静, 周梦洁, 胡汶松, 汪剑, SOKHNA MBACKE Gningue, 吴佳雯, 赵礼军, 徐文瀚, 薛正莲, 王洲, 刘艳. 不同培养条件对枯草芽胞杆菌BS168-△sinR生物膜形成及维生素K2产量的影响[J]. 食品与发酵工业, 2021, 47(14):23-30. WU J, LI W, FENG JJ, ZHOU MJ, HU WS, WANG J, GNINGUE S, WU JW, ZHAO LJ, XU WH, XUE ZL, WANG Z, LIU Y. Effect of different cultivated conditions on biofilm formation and menaquinone synthesis of Bacillus subtilis BS168-△sinR[J]. Food and Fermentation Industries, 2021, 47(14):23-30 (in Chinese).
    [38] MEIXNER-MONORI B, KUBICEK CP, HABISON A, KUBICEK-PRANZ EM, RÖHR M. Presence and regulation of the alpha-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger[J]. Journal of Bacteriology, 1985, 161(1):265-271.
    [39] BRÜCK HL, DELVIGNE F, DHULSTER P, JACQUES P, COUTTE F. Molecular strategies for adapting Bacillus subtilis 168 biosurfactant production to biofilm cultivation mode[J]. Bioresource Technology, 2019, 293:122090.
    [40] 王冬, 王攀, 何轶慧, 陈守文. DegU负调控地衣芽胞杆菌普切明酸的合成及分泌[J]. 微生物学报, 2022, 62(8):3190-3199. WANG D, WANG P, HE YH, CHEN SW. Pulcherriminic acid synthesis and secretion are negatively regulated by DegU in Bacillus licheniformis[J]. Acta Microbiologica Sinica, 2022, 62(8):3190-3199 (in Chinese).
    [41] KOBAYASHI K. Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation inBacillus subtilis[J]. Molecular Microbiology, 2007, 66(2):395-409.
    [42] 吴志勇, 李由然, 顾正华, 丁重阳, 张梁, 石贵阳. 枯草芽孢杆菌l-脯氨酸合成途径中glnA、proB、proA基因功能探究[J]. 微生物学报, 2018, 58(1):39-50. WU ZY, LI YR, GU ZH, DING G, ZHANG L, SHI GY. Function of glnA, proB and proA genes in l-proline anabolic pathway of Bacillus subtilis[J]. Acta Microbiologica Sinica, 2018, 58(1):39-50 (in Chinese).
    [43] VARMA A, PALSSON BO. Metabolic flux balancing:Basic concepts, scientific and practical use[J]. Bio/Technology, 1994, 12(10):994-998.
    [44] HASEGAWA T, HASHIMOTO KI, KAWASAKI H, NAKAMATSU T. Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum[J]. Journal of Bioscience and Bioengineering, 2008, 105(1):12-19.
    [45] SHIMIZU H, TANAKA H, NAKATO A, NAGAHISA K, KIMURA E, SHIOYA S. Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum[J]. Bioprocess and Biosystems Engineering, 2003, 25(5):291-298.
    [46] 陈升宝, 王丽敏, 于波. 不同分子量γ-聚谷氨酸的生物合成[J]. 微生物学报, 2022, 62(7):2796-2807. CHEN SB, WANG LM, YU B. Bioproduction of poly-γ-glutamic acid with diverse molecular weights in Bacillus subtilis[J]. Acta Microbiologica Sinica, 2022, 62(7):2796-2807 (in Chinese).
    [47] HALMSCHLAG B, PUTRI SP, FUKUSAKI E, BLANK LM. Identification of key metabolites in poly-γ-glutamic acid production by tuning γ-PGA synthetase expression[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:38.
    [48] van SINDEREN D, VENEMA G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis[J]. Journal of Bacteriology, 1994, 176(18):5762-5770.
    [49] YU YY, YAN F, CHEN Y, JIN C, GUO JH, CHAI YR. Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis[J]. Frontiers in Microbiology, 2016, 7:1811.
    [50] STANLEY NR, LAZAZZERA BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation[J]. Molecular Microbiology, 2005, 57(4):1143-1158.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHOU Mengjie, HU Wensong, HU Liuxiu, YU Chunmiao, WANG Zhou, HUANG Xilin, HUANG Junbao, LIANG Xueyan, TANG Jun, LUO Jianquan, XUE Zhenglian, LIU Yan. Functions of genes involved in polyglutamic acid synthesis in Bacillus subtilis. [J]. Acta Microbiologica Sinica, 2023, 63(1): 387-402

Copy
Share
Article Metrics
  • Abstract:505
  • PDF: 1413
  • HTML: 946
  • Cited by: 0
History
  • Received:May 06,2022
  • Revised:May 28,2022
  • Online: January 13,2023
  • Published: January 04,2023
Article QR Code