The process of extracellular electron transfer based on cytochrome c
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [79]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Electroactive microorganisms, with the unique ability of extracellular electron transfer, play a key role in geochemical cycle and environmental remediation. Cytochrome c participates in not only direct but also mediated extracellular electron transfer of electroactive microorganisms. The cytochrome c-mediated electron transfer is essential in the circulation of iron, manganese, carbon and other elements in the earth’s environment. Furthermore, it demonstrates good application potential in many fields such as energy production, wastewater treatment, and bioremediation. Taking the two model genera (Shewanella and Geobacter) of electroactive microorganisms as examples, this paper introduces the intracellular-to- extracellular electron transfer pathways of electroactive microorganisms, expounds the important role of cytochrome c in extracellular electron transfer, summarizes the analytical methods of cytochrome c-mediated electron transfer, and finally puts forward the future research direction of microbial extracellular electron transfer.

    Reference
    [1] GRALNICK JA, NEWMAN DK. Extracellular respiration[J]. Molecular Microbiology, 2007, 65(1):1-11.
    [2] SILVA MA, PORTELA PC, SALGUEIRO CA. Rational design of electron/proton transfer mechanisms in the exoelectrogenic bacteria Geobacter sulfurreducens[J]. The Biochemical Journal, 2021, 478(14):2871-2887.
    [3] PORTELA PC, SILVA MA, TEIXEIRA LR, SALGUEIRO CA. A unique aromatic residue modulates the redox range of a periplasmic multiheme cytochrome from Geobacter metallireducens[J]. Journal of Biological Chemistry, 2021, 296:100711.
    [4] RISSO C, SUN J, ZHUANG K, MAHADEVAN R, DeBOY R, ISMAIL W, SHRIVASTAVA S, HUOT H, KOTHARI S, DAUGHERTY S, BUI O, SCHILLING CH, LOVLEY DR, METHÉ BA. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens[J]. BMC Genomics, 2009, 10:447.
    [5] CHANG WW, LI YY, LI ZY, LOU YT, CUI TY, QIAN HC, MOL A, ZHANG DW. The effect of riboflavin on the microbiologically influenced corrosion of pure iron by Shewanella oneidensis MR-1[J]. Bioelectrochemistry (Amsterdam, Netherlands), 2022, 147:108173.
    [6] MIN D, CHENG L, LIU DF, Li WW, YU HQ. Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction[J]. Process Biochemistry, 2020, 95:108-114.
    [7] PHAM CA, JUNG SJ, PHUNG NT, LEE J, CHANG IS, KIM BH, YI HN, CHUN J. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell[J]. FEMS Microbiology Letters, 2003, 223(1):129-134.
    [8] BREUER M, ROSSO KM, BLUMBERGER J, BUTT JN. Multi-haem cytochromes in Shewanella oneidensis MR-1:structures, functions and opportunities[J]. Journal of the Royal Society, Interface, 2015, 12(102):20141117.
    [9] HEIDELBERG JF, PAULSEN IT, NELSON KE, GAIDOS EJ, NELSON WC, READ TD, EISEN JA, SESHADRI R, WARD N, METHE B, CLAYTON RA, MEYER T, TSAPIN A, SCOTT J, BEANAN M, BRINKAC L, DAUGHERTY S, DeBOY RT, DODSON RJ, DURKIN AS, et al. Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis[J]. Nature Biotechnology, 2002, 20(11):1118-1123.
    [10] METHÉ BA, NELSON KE, EISEN JA, PAULSEN IT, NELSON W, HEIDELBERG JF, WU D, WU M, WARD N, BEANAN MJ, DODSON RJ, MADUPU R, BRINKAC LM, DAUGHERTY SC, DeBOY RT, DURKIN AS, GWINN M, KOLONAY JF, SULLIVAN SA, HAFT DH, et al. Genome of Geobacter sulfurreducens:metal reduction in subsurface environments[J]. Science, 2003, 302(5652):1967-1969.
    [11] SHI L, SQUIER TC, ZACHARA JM, FREDRICKSON JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter:a key role for multihaem c-type cytochromes[J]. Molecular Microbiology, 2007, 65(1):12-20.
    [12] KLÜPFEL L, KEILUWEIT M, KLEBER M, SANDER M. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10):5601-5611.
    [13] WOLF M, KAPPLER A, JIANG J, MECKENSTOCK RU. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens[J]. Environmental Science & Technology, 2009, 43(15):5679-5685.
    [14] SMITH LJ, KAHRAMAN A, THORNTON JM. Heme proteins-Diversity in structural characteristics, function, and folding[J]. Proteins:Structure, Function, and Bioinformatics, 2010, 78(10):2349-2368.
    [15] DANTAS JM, CAMPELO LM, DUKE NEC, SALGUEIRO CA, POKKULURI PR. The structure of PccH from Geobacter sulfurreducens-a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode[J]. The FEBS Journal, 2015, 282(11):2215-2231.
    [16] ILBERT M, BONNEFOY V. Insight into the evolution of the iron oxidation pathways[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1827(2):161-175.
    [17] SHI L, RICHARDSON DJ, WANG ZM, KERISIT SN, ROSSO KM, ZACHARA JM, FREDRICKSON JK. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer[J]. Environmental Microbiology Reports, 2009, 1(4):220-227.
    [18] LONG XZ, OKAMOTO A. Outer membrane compositions enhance the rate of extracellular electron transport via cell-surface MtrC protein in Shewanella oneidensis MR-1[J]. Bioresource Technology, 2021, 320:124290.
    [19] DELGADO VP, PAQUETE CM, STURM G, GESCHER J. Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition[J]. Bioelectrochemistry (Amsterdam, Netherlands), 2019, 129:18-25.
    [20] MYERS CR, MYERS JM. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1[J]. Journal of Bacteriology, 1992, 174(11):3429-3438.
    [21] CAO B, SHI L, BROWN RN, XIONG YJ, FREDRICKSON JK, ROMINE MF, MARSHALL MJ, LIPTON MS, BEYENAL H. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms:characterization by infrared spectroscopy and proteomics[J]. Environmental Microbiology, 2011, 13(4):1018-1031.
    [22] 孔冠楠, 许玫英, 宋达, 杨永刚. Mcc在脱色希瓦氏菌S12电极呼吸中的作用[J]. 微生物学通报, 2017, 44(7):1547-1554. KONG GN, XU MY, SONG D, YANG YG. Role of Mcc in Shewanella decolorationis S12 electrode respiration[J]. Microbiology China, 2017, 44(7):1547-1554(in Chinese).
    [23] MARRITT SJ, LOWE TG, BYE J, McMILLAN DGG, SHI L, FREDRICKSON J, ZACHARA J, RICHARDSON DJ, CHEESMAN MR, JEUKEN LJC, BUTT JN. A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella[J]. The Biochemical Journal, 2012, 444(3):465-474.
    [24] REID GA, MILES CS, MOYSEY RK, PANKHURST KL, CHAPMAN SK. Catalysis in fumarate reductase[J]. Biochimica et Biophysica Acta, 2000, 1459(2/3):310-315.
    [25] EDWARDS MJ, WHITE GF, BUTT JN, RICHARDSON DJ, CLARKE TA. The crystal structure of a biological insulated transmembrane molecular wire[J]. Cell, 2020, 181(3):665-673.e10.
    [26] SUN WN, LIN ZF, YU QZ, CHENG SA, GAO HC. Promoting extracellular electron transfer of Shewanella oneidensis MR-1 by optimizing the periplasmic cytochrome c network[J]. Frontiers in Microbiology, 2021, 12:727709.
    [27] SCHUETZ B, SCHICKLBERGER M, KUERMANN J, SPORMANN AM, GESCHER J. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1[J]. Applied and Environmental Microbiology, 2009, 75(24):7789- 7796.
    [28] HARTSHORNE RS, REARDON CL, ROSS D, NUESTER J, CLARKE TA, GATES AJ, MILLS PC, FREDRICKSON JK, ZACHARA JM, LIANG S, BELIAEV AS, MARSHALL MJ, MING TE, BRANTLEY S, BUTT JN, RICHARDSON DJ. Characterization of an electron conduit between bacteria and the extracellular environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52):22169-22174.
    [29] COURSOLLE D, BARON DB, BOND DR, GRALNICK JA. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis[J]. Journal of Bacteriology, 2010, 192(2):467-474.
    [30] BREUER M, ZARZYCKI P, BLUMBERGER J, ROSSO KM. Thermodynamics of electron flow in the bacterial deca-heme cytochrome MtrF[J]. Journal of the American Chemical Society, 2012, 134(24):9868-9871.
    [31] GRALNICK JA, VALI H, LIES DP, NEWMAN DK. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12):4669-4674.
    [32] BEWLEY KD, FIRER-SHERWOOD MA, MOCK JY, ANDO N, DRENNAN CL, ELLIOTT SJ. Mind the gap:diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family[J]. Biochemical Society Transactions, 2012, 40(6):1268-1273.
    [33] CHENG YY, LI BB, LI DB, CHEN JJ, LI WW, TONG ZH, WU C, YU HQ. Promotion of iron oxide reduction and extracellular electron transfer in Shewanella oneidensis by DMSO[J]. PLoS One, 2013, 8(11):e78466.
    [34] LIU TX, LUO XB, WU YD, REINFELDER JR, YUAN X, LI XM, CHEN DD, LI FB. Extracellular electron shuttling mediated by soluble c-type cytochromes produced by Shewanella oneidensis MR-1[J]. Environmental Science & Technology, 2020, 54(17):10577-10587.
    [35] DING DW, WU ML, LIU YF. Genome-scale mutant fitness reveals versatile c-type cytochromes in Shewanella oneidensis MR-1[J]. Molecular Omics, 2021, 17(2):288-295.
    [36] BUTLER JE, YOUNG ND, LOVLEY DR. Evolution of electron transfer out of the cell:comparative genomics of six Geobacter genomes[J]. BMC Genomics, 2010, 11:40.
    [37] MEYER TE, TSAPIN AI, VANDENBERGHE I, de SMET L, FRISHMAN D, NEALSON KH, CUSANOVICH MA, van BEEUMEN JJ. Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes[J]. Omics:a Journal of Integrative Biology, 2004, 8(1):57-77.
    [38] TEIXEIRA LR, DANTAS JM, SALGUEIRO CA, CORDAS CM. Thermodynamic and kinetic properties of the outer membrane cytochrome OmcF, a key protein for extracellular electron transfer in Geobacter sulfurreducens[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2018, 1859(10):1132-1137.
    [39] LEANG C, COPPI MV, LOVLEY DR. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens[J]. Journal of Bacteriology, 2003, 185(7):2096-2103.
    [40] 孔冠楠, 许玫英, 杨永刚. 基于直接接触的微生物胞外电子传递[J]. 微生物学报, 2017, 57(5):643-650. KONG GN, XU MY, YANG YG. Direct contact- dependent microbial extracellular electron transfer[J]. Acta Microbiologica Sinica, 2017, 57(5):643-650(in Chinese).
    [41] LEVAR CE, HOFFMAN CL, DUNSHEE AJ, TONER BM, BOND DR. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens[J]. The ISME Journal, 2017, 11(3):741-752.
    [42] POKKULURI PR, LONDER YY, YANG X, DUKE NEC, ERICKSON J, ORSHONSKY V, JOHNSON G, SCHIFFER M. Structural characterization of a family of cytochromes c(7) involved in Fe(III) respiration by Geobacter sulfurreducens[J]. Biochimica et Biophysica Acta, 2010, 1797(2):222-232.
    [43] SANTOS TC, SILVA MA, MORGADO L, DANTAS JM, SALGUEIRO CA. Diving into the redox properties of Geobacter sulfurreducens cytochromes:a model for extracellular electron transfer[J]. Dalton Transactions (Cambridge, England:2003), 2015, 44(20):9335-9344.
    [44] LIU YM, FREDRICKSON JK, ZACHARA JM, SHI L. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA[J]. Frontiers in Microbiology, 2015, 6:1075.
    [45] CHAN CH, LEVAR CE, JIMÉNEZ-OTERO F, BOND DR. Genome scale mutational analysis of Geobacter sulfurreducens reveals distinct molecular mechanisms for respiration and sensing of poised electrodes versus Fe(III) oxides[J]. Journal of Bacteriology, 2017, 199(19):e00340-e00317.
    [46] NEVIN KP, KIM BC, GLAVEN RH, JOHNSON JP, WOODARD TL, METHÉ BA, DIDONATO RJ, COVALLA SF, FRANKS AE, LIU AN, LOVLEY DR. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells[J]. PLoS One, 2009, 4(5):e5628.
    [47] VOORDECKERS JW, KIM BC, IZALLALEN M, LOVLEY DR. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate[J]. Applied and Environmental Microbiology, 2010, 76(7):2371-2375.
    [48] FILMAN DJ, MARINO SF, WARD JE, YANG L, MESTER Z, BULLITT E, LOVLEY DR, STRAUSS M. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire[J]. Communications Biology, 2019, 2:219.
    [49] ZACHAROFF LA, MORRONE DJ, BOND DR. Geobacter sulfurreducens extracellular multiheme cytochrome PgcA facilitates respiration to Fe(III) oxides but not electrodes[J]. Frontiers in Microbiology, 2017, 8:2481.
    [50] 黄玲艳, 刘星, 周顺桂. 微生物直接种间电子传递:机制及应用[J]. 土壤学报, 2018, 55(6):1313-1324. HUANG LY, LIU X, ZHOU SG. Direct interspecies electron transfer of microbes:mechanism and application[J]. Acta Pedologica Sinica, 2018, 55(6):1313-1324(in Chinese).
    [51] SUMMERS ZM, FOGARTY HE, LEANG C, FRANKS AE, MALVANKAR NS, LOVLEY DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009):1413-1415.
    [52] HA PT, LINDEMANN SR, SHI L, DOHNALKOVA AC, FREDRICKSON JK, MADIGAN MT, BEYENAL H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer[J]. Nature Communications, 2017, 8:13924.
    [53] DING J, LU YZ, FU L, DING ZW, MU Y, CHENG SH, ZENG RJ. Decoupling of DAMO Archaea from DAMO bacteria in a methane-driven microbial fuel cell[J]. Water Research, 2017, 110:112-119.
    [54] REGUERA G, McCARTHY KD, MEHTA T, NICOLL JS, TUOMINEN MT, LOVLEY DR. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101.
    [55] 许杰龙, 周顺桂, 袁勇, 王跃强, 庄莉. 有"生命"的电线:浅析微生物纳米导线电子传递机制及其应用[J]. 化学进展, 2012, 24(9):1794-1800. XU JL, ZHOU SG, YUAN Y, WANG YQ, ZHUANG L. Live wire:a review on electron transfer mechanism and applications of microbial nanowires[J]. Progress in Chemistry, 2012, 24(9):1794-1800(in Chinese).
    [56] WANG FB, GU YQ, O'BRIEN JP, YI SM, YALCIN SE, SRIKANTH V, SHEN C, VU D, ING NL, HOCHBAUM AI, EGELMAN EH, MALVANKAR NS. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers[J]. Cell, 2019, 177(2):361-369.e10.
    [57] YALCIN SE, O'BRIEN JP, GU YQ, REISS K, YI SM, JAIN R, SRIKANTH V, DAHL PJ, HUYNH W, VU D, ACHARYA A, CHAUDHURI S, VARGA T, BATISTA VS, MALVANKAR NS. Electric field stimulates production of highly conductive microbial OmcZ nanowires[J]. Nature Chemical Biology, 2020, 16(10):1136-1142.
    [58] YE Y, LIU X, NEALSON KH, RENSING C, QIN SP, ZHOU SG. Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms[J]. mBio, 2022, 13(1):e0382221.
    [59] LEUNG KM, WANGER G, EL-NAGGAR MY, GORBY Y, SOUTHAM G, LAU WM, YANG J. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior[J]. Nano Letters, 2013, 13(6):2407-2411.
    [60] GORBY YA, YANINA S, McLEAN JS, ROSSO KM, MOYLES D, DOHNALKOVA A, BEVERIDGE TJ, CHANG IS, KIM BH, KIM KS, CULLEY DE, REED SB, ROMINE MF, SAFFARINI DA, HILL EA, SHI L, ELIAS DA, KENNEDY DW, PINCHUK G, WATANABE K, ISHII S, LOGAN B, NEALSON KH, FREDRICKSON JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30):11358-11363.
    [61] PIRBADIAN S, BARCHINGER SE, LEUNG KM, BYUN HS, JANGIR Y, BOUHENNI RA, REED SB, ROMINE MF, SAFFARINI DA, SHI L, GORBY YA, GOLBECK JH, EL-NAGGAR MY. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35):12883-12888.
    [62] BARCHINGER SE, PIRBADIAN S, SAMBLES C, BAKER CS, LEUNG KM, BURROUGHS NJ, EL-NAGGAR MY, GOLBECK JH. Regulation of gene expression in Shewanella oneidensis MR-1 during electron acceptor limitation and bacterial nanowire formation[J]. Applied and Environmental Microbiology, 2016, 82(17):5428-5443.
    [63] SUBRAMANIAN P, PIRBADIAN S, EL-NAGGAR MY, JENSEN GJ. Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(14):E3246-E3255.
    [64] ZHAO G, LI EZ, LI JJ, LIU F, YANG XN, XU MY. Effects of flavin-goethite interaction on goethite reduction by Shewanella decolorationis S12[J]. Frontiers in Microbiology, 2019, 10:1623.
    [65] MARSILI E, BARON DB, SHIKHARE ID, COURSOLLE D, GRALNICK JA, BOND DR. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10):3968-3973.
    [66] WANG ZM, SHI Z, SHI L, WHITE GF, RICHARDSON DJ, CLARKE TA, FREDRICKSON JK, ZACHARA JM. Effects of soluble flavin on heterogeneous electron transfer between surface- exposed bacterial cytochromes and iron oxides[J]. Geochimica et Cosmochimica Acta, 2015, 163:299-310.
    [67] OKAMOTO A, HASHIMOTO K, NEALSON KH, NAKAMURA R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19):7856-7861.
    [68] HUANG LY, TANG JH, CHEN M, LIU X, ZHOU SG. Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens[J]. Frontiers in Microbiology, 2018, 9:2886.
    [69] THIRUMURTHY MA, JONES AK. Geobacter cytochrome OmcZs binds riboflavin:implications for extracellular electron transfer[J]. Nanotechnology, 2020, 31(12):124001.
    [70] HUANG LY, LIU X, YE Y, CHEN M, ZHOU SG. Evidence for the coexistence of direct and riboflavin-mediated interspecies electron transfer in Geobacter co-culture[J]. Environmental Microbiology, 2020, 22(1):243-254.
    [71] BRUTINEL ED, GRALNICK JA. Shuttling happens:soluble flavin mediators of extracellular electron transfer in Shewanella[J]. Applied Microbiology and Biotechnology, 2012, 93(1):41-48.
    [72] HONG GY, PACHTER R. Bound flavin-cytochrome model of extracellular electron transfer in Shewanella oneidensis:analysis by free energy molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2016, 120(25):5617-5624.
    [73] BABANOVA S, MATANOVIC I, CORNEJO J, BRETSCHGER O, NEALSON K, ATANASSOV P. Outer membrane cytochromes/flavin interactions in Shewanella spp.-a molecular perspective[J]. Biointerphases, 2017, 12(2):021004.
    [74] YOU JP, DENG YY, CHEN H, YE JX, ZHANG SH, ZHAO JK. Enhancement of gaseous o-xylene degradation in a microbial fuel cell by adding Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 252:126571.
    [75] ZHAO G, LI EZ, LI JJ, LIU FF, LIU F, XU MY. Goethite hinders azo dye bioreduction by blocking terminal reductive sites on the outer membrane of Shewanella decolorationis S12[J]. Frontiers in Microbiology, 2019, 10:1452.
    [76] van WONDEREN JH, ADAMCZYK K, WU XJ, JIANG XY, PIPER SEH, HALL CR, EDWARDS MJ, CLARKE TA, ZHANG HJ, JEUKEN LJC, SAZANOVICH IV, TOWRIE M, BLUMBERGER J, MEECH SR, BUTT JN. Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(39):e2107939118.
    [77] LOWER BH, YONGSUNTHON R, SHI L, WILDLING L, GRUBER HJ, WIGGINTON NS, REARDON CL, PINCHUK GE, DROUBAY TC, BOILY JF, LOWER SK. Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1[J]. Applied and Environmental Microbiology, 2009, 75(9):2931-2935.
    [78] REARDON CL, DOHNALKOVA AC, NACHIMUTHU P, KENNEDY DW, SAFFARINI DA, AREY BW, SHI L, WANG Z, MOORE D, McLEAN JS, MOYLES D, MARSHALL MJ, ZACHARA JM, FREDRICKSON JK, BELIAEV AS. Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1[J]. Geobiology, 2010, 8(1):56-68.
    [79] WU YD, LI FB, LIU TX, HAN R, LUO XB. pH dependence of quinone-mediated extracellular electron transfer in a bioelectrochemical system[J]. Electrochimica Acta, 2016, 213:408-415.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

TANG Mingfang, SHENG Guangyao, LI Changxin, DING Jing. The process of extracellular electron transfer based on cytochrome c. [J]. Acta Microbiologica Sinica, 2023, 63(2): 509-522

Copy
Share
Article Metrics
  • Abstract:579
  • PDF: 3466
  • HTML: 1752
  • Cited by: 0
History
  • Received:June 06,2022
  • Adopted:July 22,2022
  • Online: February 21,2023
  • Published: February 04,2023
Article QR Code