Research and application of haloarchaeal promoter
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [118]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Halophilic archaea are an important group in the domain archaea. They are of great value in the fields of genetics and metabolism, evolution and adaptation, technology frontier and synthetic biology. Haloarchaeal promoter is indispensable for both fundamental and applied research on halophilic archaea. In this paper, we first described the structure and functions of archaeal promoter in transcription. Then, we summarized and discussed the research achievements in haloarchaeal promoter from the following three aspects: the methods for studying promoter, the constitutive and inducible haloarchaeal promoters reported so far, and their applications. The challenges and future research focusing on mining, designing, developing, and optimizing haloarchaeal promoter were also prospected.

    Reference
    [1] WOESE CR, KANDLER O, WHEELIS ML. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12):4576-4579.
    [2] BAKER BJ, de ANDA V, SEITZ KW, DOMBROWSKI N, SANTORO AE, LLOYD KG. Diversity, ecology and evolution of archaea[J]. Nature Microbiology, 2020, 5(7):887-900.
    [3] ISHINO Y, KRUPOVIC M, FORTERRE P. History of CRISPR-cas from encounter with a mysterious repeated sequence to genome editing technology[J]. Journal of Bacteriology, 2018, 200(7):e00580-e00517.
    [4] PFEIFER K, ERGAL İ, KOLLER M, BASEN M, SCHUSTER B, RITTMANN SKM R. Archaea biotechnology[J]. Biotechnology Advances, 2021, 47:107668.
    [5] 沈萍. 极端嗜盐古菌的分子遗传学研究. 湖北省遗传学会第七次代表大会暨学术讨论会, 中国, 武昌, F, 2004. SHEN P. Research of haloarchaeal molecular genetics[C]. The 7th Seminar of the Genetics Society of HuBei Province, Wuchang China, F, 2004(in Chinese).
    [6] 向华. 极端嗜盐古菌分子遗传与生理代谢研究。中国遗传学会第八次代表大会暨学术讨论会, 中国, 重庆, F, 2008. XIANG H. Research of haloarchaeal molecular genetics and physiological metabolism[C]. The 8th Seminar of the Genetics Society of China, Chongqing China, F, 2008(in Chinese).
    [7] LIFTON RP, GOLDBERG ML, KARP RW, HOGNESS DS. The organization of the histone genes in Drosophila melanogaster:functional and evolutionary implications[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1978, 42 Pt 2:1047-1051.
    [8] LAGRANGE T, KAPANIDIS AN, TANG H, REINBERG D, EBRIGHT RH. New core promoter element in RNA polymerase II-dependent transcription:sequence-specific DNA binding by transcription factor IIB[J]. Genes & Development, 1998, 12(1):34-44.
    [9] SMALE ST, BALTIMORE D. The "initiator" as a transcription control element[J]. Cell, 1989, 57(1):103-113.
    [10] REITER WD, HÜDEPOHL U, ZILLIG W. Mutational analysis of an archaebacterial promoter:essential role of a TATA box for transcription efficiency and start-site selection in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24):9509-9513.
    [11] HAUSNER W, FREY G, THOMM M. Control regions of an archaeal gene. A TATA box and an initiator element promote cell-free transcription of the tRNA (Val) gene of Methanococcus vannielii[J]. Journal of Molecular Biology, 1991, 222(3):495-508.
    [12] BELL SD, JACKSON SP. Transcription and translation in Archaea:a mosaic of eukaryal and bacterial features[J]. Trends in Microbiology, 1998, 6(6):222-228.
    [13] BELL SD, JACKSON SP. Mechanism and regulation of transcription in Archaea[J]. Current Opinion in Microbiology, 2001, 4(2):208-213.
    [14] QURESHI SA, JACKSON SP. Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength[J]. Molecular Cell, 1998, 1(3):389-400.
    [15] BELL SD, KOSA PL, SIGLER PB, JACKSON SP. Orientation of the transcription preinitiation complex in Archaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24):13662-13667.
    [16] LANGER D, HAIN J, THURIAUX P, ZILLIG W. Transcription in Archaea:similarity to that in eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(13):5768-5772.
    [17] DEDECKER BS, O'BRIEN R, FLEMING PJ, GEIGER JH, JACKSON SP, SIGLER PB. The crystal structure of a hyperthermophilic archaeal TATA-box binding protein[J]. Journal of Molecular Biology, 1996, 264(5):1072-1084.
    [18] LITTLEFIELD O, KORKHIN Y, SIGLER PB. The structural basis for the oriented assembly of a TBP/TFB/promoter complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24):13668-13673.
    [19] MEINHART A, BLOBEL J, CRAMER P. An extended winged helix domain in general transcription factor E/IIEα[J]. Journal of Biological Chemistry, 2003, 278(48):48267-48274.
    [20] NAJI S, GRÜNBERG S, THOMM M. The RPB7 orthologue E' is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation[J]. The Journal of Biological Chemistry, 2007, 282(15):11047-11057.
    [21] HAUSNER W, THOMM M. Events during initiation of archaeal transcription:open complex formation and DNA-protein interactions[J]. Journal of Bacteriology, 2001, 183(10):3025-3031.
    [22] GEHRING AM, WALKER JE, SANTANGELO TJ. Transcription regulation in Archaea[J]. Journal of Bacteriology, 2016, 198(14):1906-1917.
    [23] BYLINO OV, IBRAGIMOV AN, SHIDLOVSKII YV. Evolution of regulated transcription[J]. Cells, 2020, 9(7):1675.
    [24] HOLMES ML, SCOPES RK, MORITZ RL, SIMPSON RJ, Englert C, Pfeifer F, Dyall-Smith ML. Purification and analysis of an extremely halophilic beta-galactosidase from Haloferax alicantei[J]. Biochimica et Biophysica Acta, 1997, 1337(2):276-286.
    [25] GREGOR D, PFEIFER F. Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic Archaea[J]. Microbiology:Reading, England, 2001, 147(Pt 7):1745-1754.
    [26] LV J, WANG S, ZENG C, HUANG YP, CHEN XD. Construction of a shuttle expression vector with a promoter functioning in both halophilic Archaea and bacteria[J]. FEMS Microbiology Letters, 2013, 349(1):9-15.
    [27] 黄玉屏, 段珍红, 熊音, 郭培懿, 沈萍. 盐生盐杆菌启动子DNA片段的特征序列及其功能分析[J]. 武汉大学学报:理学版, 2001, 47(4):456-462. HUANG YP, DUAN ZH, XIONG Y, GUO PY, SHEN P. Sequence characteristic and function of DNA fragments active as bacteria promoter from Archaea[J]. Wuhan University Journal:Natural Science Edition, 2001, 47(4):456-462(in Chinese).
    [28] STOLT P, ZILLIG W. Antisense RNA mediates transcriptional processing in an archaebacterium, indicating a novel kind of RNase activity[J]. Molecular Microbiology, 1993, 7(6):875-882.
    [29] TANG SL, NUTTALL S, NGUI K, FISHER C, LOPEZ P, DYALL-SMITH M. HF2:a double-stranded DNA tailed haloarchaeal virus with a mosaic genome[J]. Molecular Microbiology, 2002, 44(1):283-296.
    [30] DYALL-SMITH M, TANG SL, RUSS B, CHIANG PW, PFEIFFER F. Comparative genomics of two new HF1-like haloviruses[J]. Genes, 2020, 11(4):405.
    [31] RUSS B, PFEIFFER F, DYALL-SMITH M. Halovirus HF2 intergenic repeat sequences carry promoters[J]. Viruses, 2021, 13(12):2388.
    [32] BITAN-BANIN G, ORTENBERG R, MEVARECH M. Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene[J]. Journal of Bacteriology, 2003, 185(3):772-778.
    [33] LARGE A, STAMME C, LANGE C, DUAN ZH, ALLERS T, SOPPA J, LUND PA. Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene[J]. Molecular Microbiology, 2007, 66(5):1092-1106.
    [34] SCHWEITZER BI, DICKER AP, BERTINO JR. Dihydrofolate reductase as a therapeutic target[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 1990, 4(8):2441-2452.
    [35] ROSENSHINE I, ZUSMAN T, WERCZBERGER R, MEVARECH M. Amplification of specific DNA sequences correlates with resistance of the archaebacterium Halobacterium volcanii to the dihydrofolate reductase inhibitors trimethoprim and methotrexate[J]. Molecular and General Genetics MGG, 1987, 208(3):518-522.
    [36] ZUSMAN T, ROSENSHINE I, BOEHM G, JAENICKE R, LESKIW B, MEVARECH M. Dihydrofolate reductase of the extremely halophilic archaebacterium Halobacterium volcanii[J]. Journal of Biological Chemistry, 1989, 264(32):18878-18883.
    [37] DANNER S, SOPPA J. Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection[J]. Molecular Microbiology, 1996, 19(6):1265-1276.
    [38] TSIEN RY. The green fluorescent protein[J]. Annual Review of Biochemistry, 1998, 67:509-544.
    [39] CHALFIE M, TU Y, EUSKIRCHEN G, WARD WW, PRASHER DC. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263(5148):802-805.
    [40] CRAMERI A, WHITEHORN EA, TATE E, STEMMER WPC. Improved green fluorescent protein by molecular evolution using DNA shuffling[J]. Nature Biotechnology, 1996, 14(3):315-319.
    [41] DAVIS SJ, VIERSTRA RD. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants[J]. Plant Molecular Biology, 1998, 36(4):521-528.
    [42] REUTER CJ, MAUPIN-FURLOW JA. Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins[J]. Applied and Environmental Microbiology, 2004, 70(12):7530-7538.
    [43] CAI SF, CAI L, ZHAO DH, LIU GM, HAN J, ZHOU J, XIANG H. A novel DNA-binding protein, PhaR, plays a central role in the regulation of polyhydroxyalkanoate accumulation and granule formation in the haloarchaeon Haloferax mediterranei[J]. Applied and Environmental Microbiology, 2015, 81(1):373-385.
    [44] FODOR SPA, RAVA RP, HUANG XC, PEASE AC, HOLMES CP, ADAMS CL. Multiplexed biochemical assays with biological chips[J]. Nature, 1993, 364(6437):555-556.
    [45] SCHENA M, SHALON D, DAVIS RW, BROWN PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science, 1995, 270(5235):467-470.
    [46] STRILLINGER E, GRÖTZINGER SW, ALLERS T, EPPINGER J, WEUSTER-BOTZ D. Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor[J]. Applied Microbiology and Biotechnology, 2016, 100(3):1183-1195.
    [47] CAI L, CAI SF, ZHAO DH, WU JH, WANG L, LIU XQ, LI M, HOU J, ZHOU J, LIU JF, HAN J, XIANG H. Analysis of the transcriptional regulator GlpR, promoter elements, and posttranscriptional processing involved in fructose-induced activation of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Haloferax mediterranei[J]. Applied and Environmental Microbiology, 2014, 80(4):1430-1440.
    [48] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63.
    [49] SHARMA CM, HOFFMANN S, DARFEUILLE F, REIGNIER J, FINDEIß S, SITTKA A, CHABAS S, REICHE K, HACKERMÜLLER J, REINHARDT R, STADLER PF, VOGEL J. The primary transcriptome of the major human pathogen Helicobacter pylori[J]. Nature, 2010, 464(7286):250-255.
    [50] SHARMA CM, Vogel J. Differential RNA-seq:The approach behind and the biological insight gained[J]. Current Opinion in Microbiology, 2014, 19:97-105.
    [51] BABSKI J, HAAS KA, NÄTHER-SCHINDLER D, PFEIFFER F, FÖRSTNER KU, HAMMELMANN M, HILKER R, BECKER A, SHARMA CM, MARCHFELDER A, SOPPA J. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq)[J]. BMC Genomics, 2016, 17(1):629.
    [52] LAASS S, MONZON VA, KLIEMT J, HAMMELMANN M, PFEIFFER F, FÖRSTNER KU, SOPPA J. Characterization of the transcriptome of Haloferax volcanii, grown under four different conditions, with mixed RNA-Seq[J]. PLoS One, 2019, 14(4):e0215986.
    [53] HUTCHEON GW, VASISHT N, Bolhuis A. Characterisation of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica[J]. Extremophiles, 2005, 9(6):487-495.
    [54] ZENG C, ZHAO YZ, CUI CZ, ZHANG H, ZHU JY, TANG XF, SHEN P, HUANG YP, CHEN XD. Characterization of the Haloarcula hispanica amyH gene promoter, an archaeal promoter that confers promoter activity in Escherichia coli[J]. Gene, 2009, 442(1/2):1-7.
    [55] PFEIFER F, GRIFFIG J, OESTERHELT D. The fdx gene encoding the[2Fe-2S] ferredoxin of Halobacterium salinarium (H. halobium)[J]. Molecular and General Genetics MGG, 1993, 239(1):66-71.
    [56] MURA C, RANDOLPH PS, PATTERSON J, COZEN AE. Archaeal and eukaryotic homologs of Hfq:a structural and evolutionary perspective on Sm function[J]. RNA Biology, 2013, 10(4):636-651.
    [57] PAYÁ G, BAUTISTA V, CAMACHO M, BONETE MJ, ESCLAPEZ J. Functional analysis of Lsm protein under multiple stress conditions in the extreme haloarchaeon Haloferax mediterranei[J]. Biochimie, 2021, 187:33-47.
    [58] FISCHER S, BENZ J, SPÄTH B, MAIER LK, STRAUB J, GRANZOW M, RAABE M, URLAUB H, HOFFMANN J, BRUTSCHY B, ALLERS T, SOPPA J, MARCHFELDER A. The archaeal Lsm protein binds to small RNAs[J]. The Journal of Biological Chemistry, 2010, 285(45):34429-34438.
    [59] MAIER LK, BENZ J, FISCHER S, ALSTETTER M, JASCHINSKI K, HILKER R, BECKER A, ALLERS T, SOPPA J, MARCHFELDER A. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells[J]. Biochimie, 2015, 117:129-137.
    [60] JENDROSSEK D, PFEIFFER D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate)[J]. Environmental Microbiology, 2014, 16(8):2357-2373.
    [61] PÖTTER M, Steinbüchel A. Poly(3-hydroxybutyrate) granule-associated proteins:impacts on poly(3-hydroxybutyrate) synthesis and degradation[J]. Biomacromolecules, 2005, 6(2):552-560.
    [62] ZUO ZQ, XUE Q, ZHOU J, ZHAO DH, HAN J, XIANG H. Engineering Haloferax mediterranei as an efficient platform for high level production of lycopene[J]. Frontiers in Microbiology, 2018, 9:2893.
    [63] CHEN JY, MITRA R, ZHANG SJ, ZUO ZQ, LIN L, ZHAO DH, XIANG H, HAN J. Unusual phosphoenolpyruvate (PEP) synthetase-like protein crucial to enhancement of polyhydroxyalkanoate accumulation in Haloferax mediterranei revealed by dissection of PEP-pyruvate interconversion mechanism[J]. Applied and Environmental Microbiology, 2019, 85(19):e00984-e00919.
    [64] CHEN JY, MITRA R, XIANG H, HAN J. Deletion of the pps-like gene activates the cryptic phaC genes in Haloferax mediterranei[J]. Applied Microbiology and Biotechnology, 2020, 104(22):9759-9771.
    [65] LIU GM, CAI SF, HOU J, ZHAO DH, HAN J, ZHOU J, XIANG H. Enoyl-CoA hydratase mediates polyhydroxyalkanoate mobilization in Haloferax mediterranei[J]. Scientific Reports, 2016, 6:24015.
    [66] LIU GM, HOU J, CAI SF, ZHAO DH, CAI L, HAN J, ZHOU J, XIANG H. A patatin-like protein associated with the polyhydroxyalkanoate (PHA) granules of Haloferax mediterranei acts as an efficient depolymerase in the degradation of native PHA[J]. Applied and Environmental Microbiology, 2015, 81(9):3029-3038.
    [67] CHENG FY, GONG LY, ZHAO DH, YANG HB, ZHOU J, LI M, XIANG H. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon[J]. Journal of Genetics and Genomics, 2017, 44(11):541-548.
    [68] LIN L, CHEN JY, MITRA R, GAO QX, CHENG FY, XU T, ZUO ZQ, XIANG H, HAN J. Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux[J]. Communications Biology, 2021, 4:1007.
    [69] GREGOR D, PFEIFER F. In vivo analyses of constitutive and regulated promoters in halophilic Archaea[J]. Microbiology:Reading, England, 2005, 151(Pt 1):25-33.
    [70] BORN J, PFEIFER F. Improved GFP variants to study gene expression in haloarchaea[J]. Frontiers in Microbiology, 2019, 10:1200.
    [71] HAN J, LU QH, ZHOU LG, ZHOU J, XIANG H. Molecular characterization of the phaECHmgenes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui[J]. Applied and Environmental Microbiology, 2007, 73(19):6058-6065.
    [72] SÉRAPHIN B. Sm and Sm-like proteins belong to a large family:identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs[J]. The EMBO Journal, 1995, 14(9):2089-2098.
    [73] SCOFIELD DG, LYNCH M. Evolutionary diversification of the Sm family of RNA-associated proteins[J]. Molecular Biology and Evolution, 2008, 25(11):2255-2267.
    [74] VOGEL J, LUISI BF. Hfq and its constellation of RNA[J]. Nature Reviews Microbiology, 2011, 9(8):578-589.
    [75] NIELSEN JS, BØGGILD A, ANDERSEN CBF, NIELSEN G, BOYSEN A, BRODERSEN DE, VALENTIN-HANSEN P. An Hfq-like protein in Archaea:crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii[J]. RNA:New York, N Y, 2007, 13(12):2213-2223.
    [76] SAUTER C, BASQUIN J, SUCK D. Sm-like proteins in eubacteria:the crystal structure of the Hfq protein from Escherichia coli[J]. Nucleic Acids Research, 2003, 31(14):4091-4098.
    [77] HORNE M, ENGLERT C, WIMMER C, PFEIFER F. A DNA region of 9 kbp contains all genes necessary for gas vesicle synthesis in halophilic archaebacteria[J]. Molecular Microbiology, 1991, 5(5):1159-1174.
    [78] PFEIFER F. Haloarchaea and the formation of gas vesicles[J]. Life:Basel, Switzerland, 2015, 5(1):385-402.
    [79] ENGLERT C, HORNE M, PFEIFER F. Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt[J]. Molecular and General Genetics MGG, 1990, 222(2):225-232.
    [80] HECHLER T, FRECH M, PFEIFER F. Glucose inhibits the formation of gas vesicles in Haloferax volcanii transformants[J]. Environmental Microbiology, 2008, 10(1):20-30.
    [81] HECHLER T, PFEIFER F. Anaerobiosis inhibits gas vesicle formation in halophilic Archaea[J]. Molecular Microbiology, 2009, 71(1):132-145.
    [82] DASSARMA P, ZAMORA RC, MÜLLER JA, DASSARMA S. Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation[J]. Journal of Bacteriology, 2012, 194(20):5530-5537.
    [83] PFEIFER F. Distribution, formation and regulation of gas vesicles[J]. Nature Reviews Microbiology, 2012, 10(10):705-715.
    [84] ENGLERT C, KRÜGER K, OFFNER S, PFEIFER F. Three different but related gene clusters encoding gas vesicles in halophilic archaea[J]. Journal of Molecular Biology, 1992, 227(2):586-592.
    [85] OFFNER S, WANNER G, PFEIFER F. Functional studies of the gvpACNO operon of Halobacterium salinarium reveal that the GvpC protein shapes gas vesicles[J]. Journal of Bacteriology, 1996, 178(7):2071-2078.
    [86] RÖDER R, PFEIFER F. Influence of salt on the transcription of the gas-vesicle genes of Haloferax mediterranei and identification of the endogenous transcriptional activator gene[J]. Microbiology:Reading, England, 1996, 142(Pt 7):1715-1723.
    [87] ENGLERT C, WANNER G, PFEIFER F. Functional analysis of the gas vesicle gene cluster of the halophilic archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product[J]. Molecular Microbiology, 1992, 6(23):3543-3550.
    [88] SCHEUCH S, MARSCHAUS L, SARTORIUS-NEEF S, PFEIFER F. Regulation of gvp genes encoding gas vesicle proteins in halophilic Archaea[J]. Archives of Microbiology, 2008, 190(3):333-339.
    [89] MARSCHAUS L, PFEIFER F. A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea[J]. Microbiology:Reading, England, 2012, 158(Pt 11):2815-2825.
    [90] THOMPSON DK, PALMER JR, DANIELS CJ. Expression and heat-responsive regulation of a TFIIB homologue from the archaeon Haloferax volcanii[J]. Molecular Microbiology, 1999, 33(5):1081-1092.
    [91] LU QH, HAN J, ZHOU LG, COKER JA, DASSARMA P, DASSARMA S, XIANG H. Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea:a new paradigm for general transcription factor directed archaeal gene regulation[J]. Nucleic Acids Research, 2008, 36(9):3031-3042.
    [92] BRÄAuml;SEN C, ESSER D, RAUCH B, SIEBERS B. Carbohydrate metabolism in Archaea:current insights into unusual enzymes and pathways and their regulation[J]. Microbiology and Molecular Biology Reviews:MMBR, 2014, 78(1):89-175.
    [93] RAWLS KS, YACOVONE SK, MAUPIN-FURLOW JA. GlpR represses fructose and glucose metabolic enzymes at the level of transcription in the haloarchaeon Haloferax volcanii[J]. Journal of Bacteriology, 2010, 192(23):6251-6260.
    [94] JOHNSEN U, SUTTER JM, SCHULZ AC, TÄSTENSEN JB, SCHÖNHEIT P. XacR-a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii[J]. Environmental Microbiology, 2015, 17(5):1663-1676.
    [95] SUTTER JM, JOHNSEN U, SCHÖNHEIT P. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii[J]. FEMS Microbiology Letters, 2017, 364(13):fnx140.
    [96] MIRFEIZOLLAHI A, YAKHCHALI B, DELDAR AA, KARKHANE AA. In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif[J]. Extremophiles, 2019, 23(1):59-67.
    [97] BALIGA NS, DASSARMA S. Saturation mutagenesis of the TATA box and upstream activator sequence in the haloarchaeal bop gene promoter[J]. Journal of Bacteriology, 1999, 181(8):2513-2518.
    [98] BALIGA NS, KENNEDY SP, NG WV, HOOD L, DASSARMA S. Genomic and genetic dissection of an archaeal regulon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5):2521-2525.
    [99] FURTWÄNGLER K, TARASOV V, WENDE A, SCHWARZ C, OESTERHELT D. Regulation of phosphate uptake via PST transporters in Halobacterium salinarum R1[J]. Molecular Microbiology, 2010, 76(2):378-392.
    [100] STRAHL H, GREIE JC. The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+[J]. Extremophiles, 2008, 12(6):741-752.
    [101] KIXMÜLLER D, STRAHL H, WENDE A, GREIE JC. Archaeal transcriptional regulation of the prokaryotic KdpFABC complex mediating K+ uptake in H. salinarum[J]. Extremophiles, 2011, 15(6):643.
    [102] KIXMÜLLER D, GREIE JC. Construction and characterization of a gradually inducible expression vector for Halobacterium salinarum, based on the kdp promoter[J]. Applied and Environmental Microbiology, 2012, 78(7):2100-2105.
    [103] MARTÍNEZ-ESPINOSA RM, MARHUENDA-EGEA FC, BONETE MJ. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei:purification and characterisation[J]. FEMS Microbiology Letters, 2001, 204(2):381-385.
    [104] PASTOR-SOLER S, CAMACHO M, BAUTISTA V, BONETE MJ, ESCLAPEZ J. Towards the elucidation of assimilative nasABC operon transcriptional regulation in Haloferax mediterranei[J]. Genes, 2021, 12(5):619.
    [105] WALSBY AE. Gas vesicles[J]. Microbiological Reviews, 1994, 58(1):94-144.
    [106] MAGER WH, de KRUIJFF AJ. Stress-induced transcriptional activation[J]. Microbiological Reviews, 1995, 59(3):506-531.
    [107] ZUBER U, SCHUMANN W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis[J]. Journal of Bacteriology, 1994, 176(5):1359-1363.
    [108] SORGER PK. Heat shock factor and the heat shock response[J]. Cell, 1991, 65(3):363-366.
    [109] THOMPSON DK, DANIELS CJ. Heat shock inducibility of an archaeal TATA-like promoter is controlled by adjacent sequence elements[J]. Molecular Microbiology, 1998, 27(3):541-551.
    [110] KARAN R, CAPES MD, DASSARMA P, DASSARMA S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi[J]. BMC Biotechnology, 2013, 13:3.
    [111] MARTIN JH, SHERWOOD RAWLS K, CHAN JC, HWANG S, MARTINEZ-PASTOR M, MCMILLAN LJ, PRUNETTI L, SCHMID AK, MAUPIN-FURLOW JA. GlpR is a direct transcriptional repressor of fructose metabolic genes in Haloferax volcanii[J]. Journal of Bacteriology, 2018, 200(17):e00244-e00218.
    [112] GROPP F, BETLACH MC. The bat gene of Halobacterium halobium encodes a trans-acting oxygen inducibility factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(12):5475-5479.
    [113] VERSHININA OA, ZNAMENSKAIA LV. Pho regulony bakteriĭ[J]. Mikrobiologiia, 2002, 71(5):581-595.
    [114] LAM WL, COHEN A, TSOULUHAS D, DOOLITTLE WF. Genes for tryptophan biosynthesis in the archaebacterium Haloferax volcanii[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(17):6614-6618.
    [115] LAM WL, LOGAN SM, DOOLITTLE WF. Genes for tryptophan biosynthesis in the halophilic archaebacterium Haloferax volcanii:the trpDFEG cluster[J]. Journal of Bacteriology, 1992, 174(5):1694-1697.
    [116] MALKI L, YANKU M, BOROVOK I, COHEN G, MEVARECH M, Aharonowitz Y. Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilic archaeon Haloferax volcanii[J]. Journal of Bacteriology, 2009, 191(16):5196-5204.
    [117] 于慧敏, 郑煜堃, 杜岩, 王苗苗, 梁有向. 合成生物学研究中的微生物启动子工程策略[J]. 合成生物学, 2021, 2(4):598-611. YU HM, ZHENG YK, DU Y, WANG MM, LIANG YX. Microbial promoter engineering strategies in synthetic biology[J]. Synthetic Biology Journal, 2021, 2(4):598-611(in Chinese).
    [118] BORN J, WEITZEL K, SUESS B, PFEIFER F. A synthetic riboswitch to regulate haloarchaeal gene expression[J]. Frontiers in Microbiology, 2021, 12:696181.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XU Yang, WANG Jinhong, XU Tong, XIANG Hua, HAN Jing. Research and application of haloarchaeal promoter. [J]. Acta Microbiologica Sinica, 2023, 63(2): 523-539

Copy
Share
Article Metrics
  • Abstract:298
  • PDF: 1165
  • HTML: 1138
  • Cited by: 0
History
  • Received:June 06,2022
  • Adopted:August 12,2022
  • Online: February 21,2023
  • Published: February 04,2023
Article QR Code