Community structure of fungi in crust of carbonatite weathered for different time
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] Lithogenic fungi play an important role in the biological weathering of carbonatite. It is of great significance for understanding the weathering effect of fungi on rocks to investigate the community structure of fungi in weathering crust of carbonatite weathered for different time in typical karst areas of central Guizhou. [Methods] The abandoned carbonatite headstones in the south of Huaxi District in central Guizhou were selected and the weathering crust of carbonatite weathered for different time was sampled, followed by metagenomic sequencing of the samples. Moreover, statistical methods were used to analyze the structural and functional characteristics of fungal communities. [Results] A total of 1 087 fungal species were identified from 18 weathering crust samples, which belonged to 538 genera, 44 classes, and 9 phyla. The number and composition of fungal communities varied greatly among different samples. During the weathering of carbonatite, Ascomycota dominated the fungi, and the average relative abundance was >95%. The abundance showed significant decreasing trend with the weathering. According to the Shannon index and Simpson index, the diversity of fungi community in the crust decreased first, then increased, and finally reduced with the weathering. A total of 3 379 478 genes related to KEGG pathway level 3 were detected from all samples, which were mainly involved in the metabolism and transportation of materials and energy. The main microbiota related to carbon cycle, nitrogen cycle, and sulfur cycle belonged to Ascomycota, which showed a decreasing trend with the weathering. The results of redundancy analysis (RDA) suggested that ferric oxide (Fe2O3), total nitrogen (TN), and total phosphorus (TP) were important environmental factors affecting the community structure succession of fungi on the crust. [Conclusion] The weathering of carbonatite intensifies over time, which allows for the formation of microhabitat on rock surface, thus the material accumulation, and colonization of microorganisms, especially fungi. There were significant differences in the fungal communities of carbonatite weathered for different time. Fungal communities on carbonatite surface also change from r strategy to K strategy with the weathering.

    Reference
    [1] 杨涛, 国辉, 周金星, 彭霞薇. 苔藓结皮对碳酸盐岩的风化作用研究进展[J/OL]. 中国岩溶, 2021, 40:1-10, DOI:10.11932/karst2021y36. YANG T, GUO H, ZHOU JX, PENG XW. Research progress on the effect of moss crust on the weathering of carbonate rocks[J/OL]. Carsologica Sinica, 2021, 40:1-10, DOI:10.11932/karst2021y36(in Chinese).
    [2] VILES HA. Biokarst[J]. Progress in Physical Geography:Earth and Environment, 1984, 8(4):523-542.
    [3] 贾丽萍. 不同类群典型微生物的溶蚀作用实验研究[D]. 武汉:华中科技大学硕士学位论文, 2006. JIA LP. Experimental study on roles of different kinds of typical microbes in the corrosion of limestone[D]. Wuhan:Master's Thesis of Huazhong University of Science and Technology, 2006(in Chinese).
    [4] de la TORRE MA, GOMEZ-ALARCON G, VIZCAINO C, GARCIA MT. Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments[J]. Biogeochemistry, 1992, 19(3):129-147.
    [5] STERFLINGER K, PIÑAR G. Microbial deterioration of cultural heritage and works of art-tilting at windmills?[J]. Applied Microbiology and Biotechnology, 2013, 97(22):9637-9646.
    [6] PIÑAR G, GARCIA-VALLES M, GIMENO-TORRENTE D, FERNANDEZ-TURIEL JL, ETTENAUER J, STERFLINGER K. Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches[J]. International Biodeterioration & Biodegradation, 2013, 84:388-400.
    [7] DUAN YL, WU FS, HE DP, GU JD, FENG HY, CHEN T, LIU GX, WANG WF. Bacterial and fungal communities in the sandstone biofilms of two famous Buddhist grottoes in China[J]. International Biodeterioration & Biodegradation, 2021, 163:105267.
    [8] 李涵, 蔡林, 姚奇志, 周根陶. 真菌的生物地质作用及其在环境修复中的应用[J]. 高校地质学报, 2015, 21(3):382-394. LI H, CAI L, YAO QZ, ZHOU GT. Fungal involvement in biogeological processes and application to environmental bioremediation[J]. Geological Journal of China Universities, 2015, 21(3):382-394(in Chinese).
    [9] ZUMSTEG A, LUSTER J, GÖRANSSON H, SMITTENBERG RH, BRUNNER I, BERNASCONI SM, ZEYER J, FREY B. Bacterial, archaeal and fungal succession in the forefield of a receding glacier[J]. Microbial Ecology, 2012, 63(3):552-564.
    [10] 连宾, 陈烨, 朱立军, 杨瑞东. 微生物对碳酸盐岩的风化作用[J]. 地学前缘, 2008, 15(6):90-99. LIAN B, CHEN Y, ZHU LJ, YANG RD. Progress in the study of the weathering of carbonate rock by microbes[J]. Earth Science Frontiers, 2008, 15(6):90-99(in Chinese).
    [11] 李景阳, 朱立军, 王朝富, 樊延章, 陈筠. 碳酸盐岩风化壳及喀斯特成土作用研究[J]. 贵州地质, 1996, 13(2):139-145. LI JY, ZHU LJ, WANG CF, FAN YZ, CHEN Y. Weathering crust of carbonate rocks and process of karst soil formation[J]. Guizhou Geology, 1996, 13(2):139-145(in Chinese).
    [12] 连宾. 碳酸盐岩风化成土过程中的微生物作用[J]. 矿物岩石地球化学通报, 2010, 29(1):52-56. LIAN B. Microbial roles in the genesis of soil from carbonate rock weathering[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(1):52-56(in Chinese).
    [13] GORBUSHINA AA, BROUGHTON WJ. Microbiology of the atmosphere-rock interface:how biological interactions and physical stresses modulate a sophisticated microbial ecosystem[J]. Annual Review of Microbiology, 2009, 63:431-450.
    [14] ZHANG Y, WU FS, SU M, HE DP, GU JD, GUO QL, KAKAKHEL MA, YANG Y, WANG WF, FENG HY. Spatial and temporal distributions of microbial diversity under natural conditions on the sandstone stelae of the Beishiku Temple in China[J]. International Biodeterioration & Biodegradation, 2021, 163:105279.
    [15] 张永, 武发思, 苏敏, 贺东鹏, 马文霞, 汪万福, 冯虎元. 石质文物的生物风化及其防治研究进展[J]. 应用生态学报, 2019, 30(11):3980-3990. ZHANG Y, WU FS, SU M, HE DP, MA WX, WANG WF, FENG HY. Research progress on the bioweathering and controlling of stone cultural relics[J]. Chinese Journal of Applied Ecology, 2019, 30(11):3980-3990(in Chinese).
    [16] 马文霞, 武发思, 田恬, 马燕天, 向婷, 刘贤德, 汪万福, 冯虎元. 墓室酥碱砖壁画及其环境的真菌多样性分析[J]. 微生物学通报, 2018, 45(10):2091-2104. MA WX, WU FS, TIAN T, MA YT, XIANG T, LIU XD, WANG WF, FENG HY. Fungal diversity of brick murals with salt efflorescence and their surroundings in different ancient tombs[J]. Microbiology China, 2018, 45(10):2091-2104(in Chinese).
    [17] VILES H. Ecological perspectives on rock surface weathering:towards a conceptual model[J]. Geomorphology, 1995, 13(1/2/3/4):21-35.
    [18] 中华人民共和国国家标准. 森林土壤烧失量的测定:GB 7876-1987[S]. 北京:国家标准局, 1988.
    [19] 黄镇国, 张伟强, 刘瑞华. 中国南方红色风化壳[M]. 北京:海洋出版社, 1996. HUANG ZG, ZHANG WQ, LIU RH. South China Red Weathering Shell[M]. Beijing:Ocean Press, 1996(in Chinese).
    [20] TANG Y, LIAN B. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China[J]. Canadian Journal of Microbiology, 2012, 58(6):685-693.
    [21] 武发思, 汪万福, 贺东鹏, 陈港泉, 马燕天, 张国彬, 张晓东, 冯虎元. 嘉峪关魏晋墓腐蚀壁画真菌群落组成分析[J]. 敦煌研究, 2013(1):60-66. WU FS, WANG WF, HE DP, CHEN GQ, MA YT, ZHANG GB, ZHANG XD, FENG HY. The fungal community composition on mural paintings in tomb of Wei and Jin dynasty, Jiayuguan[J]. Dunhuang Research, 2013(1):60-66(in Chinese).
    [22] BERNER M, WANNER G, LUBITZ W. A comparative study of the fungal flora present in medieval wall paintings in the chapel of the castle Herberstein and in the parish church of St Georgen in Styria, Austria[J]. International Biodeterioration & Biodegradation, 1997, 40(1):53-61.
    [23] 王延延, 张新宇, 周启明, 张晓灵, 魏江春. 石果衣真菌(Endocarpon pusillum)比较转录组分析揭示其抗旱特性[J]. 中国科学:生命科学, 2015, 45(1):43-55. WANG YY, ZHANG XY, ZHOU QM, ZHANG XL, WEI JC. Comparative transcriptome analysis of Endocarpon pusillum reveals its drought resistance[J]. Scientia Sinica Vitae, 2015, 45(1):43-55(in Chinese).
    [24] LÜCKING R, HODKINSON BP, LEAVITT SD. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota -approaching one thousand genera[J]. The Bryologist, 2016, 119(4):361-416.
    [25] BASTIAN F, BOUZIRI L, NICOLARDOT B, RANJARD L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure[J]. Soil Biology and Biochemistry, 2008, 41(2):262-275.
    [26] ODUM EP. The strategy of ecosystem development[J]. Science, 1969, 164(3877):262-270.
    [27] FIERER N, BRADFORD MA, JACKSON RB. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6):1354-1364.
    [28] JACKSON CR. Changes in community properties during microbial succession[J]. Oikos, 2003, 101(2):444-448.
    [29] 吴汉卿, 阮楚晋, 万炜, 李胜龙, 裴丁仪, 韩苗, 陈国炜, 刘莹. 基于知识图谱分析的土壤氮循环功能基因研究进展[J/OL]. 土壤学报, 2022, 75:1-16, DOI:10.11766/trxb202110270580. WU HQ, RUAN CJ, WAN W, LI SL, PEI DY, HAN M, CHEN GW, LIU Y. Progress of functional genes related to soil nitrogen cycling based on knowledge mapping[J/OL]. Acta Pedologica Sinica, 2022, 75:1-16, DOI:10.11766/trxb202110270580(in Chinese).
    [30] 刘洋荧, 王尚, 厉舒祯, 邓晔. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7):1676-1689. LIU YY, WANG S, LI SZ, DENG Y. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China, 2017, 44(7):1676-1689(in Chinese).
    [31] 刘立玲, 周光益, 党鹏, 陈洁, 尚海, 邱丽琼, 朱宁华. 湘西石漠化区3种造林模式土壤真菌群落结构差异[J]. 生态学报, 2022, 42(10):4150-4159. LIU LL, ZHOU GY, DANG P, CHEN J, SHANG H, QIU LQ, ZHU NH. Differences of soil fungal community structure under three afforestation modes in rocky desertification region of western Hunan Province[J]. Acta Ecologica Sinica, 2022, 42(10):4150-4159(in Chinese).
    [32] 付浩, 曾歆花, 宋志琳, 兰思仁, 黄卫昌. 三种城市景观竹土壤微生物群落结构特征[J/OL]. 土壤, 2022, 65:1-11. (2022-04-27). https://kns.cnki.net/kcms/detail/32.1118.P.20220426.1814.002.html. FU H, ZENG XH, SONG ZL, LAN SR, HUANG WC. Soil microbial community structures under three urban landscape bamboo forests[J/OL]. Soils, 2022, 65:1-11. (2022-04-27). https://kns.cnki.net/kcms/detail/32.1118. P.20220426.1814.002.html (in Chinese).
    [33] JOHNSON L. Iron and siderophores in fungal-host interactions[J]. Mycological Research, 2008, 112(Pt2):170-183.
    [34] 孙红启. 铁载体和铁离子对细菌生长过程的影响[D]. 济南:山东大学博士学位论文, 2008. SUN HQ. Effects of siderophore and ferric ion on bacterial growth process[D]. Jinan:Doctoral Dissertation of Shandong University, 2008(in Chinese).
    [35] WEBER KA, ACHENBACH LA, COATES JD. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
    [36] 朱永官, 段桂兰, 陈保冬, 彭新华, 陈正, 孙国新. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学:地球科学, 2014, 44(6):1107-1116. ZHU YG, DUAN GL, CHEN BD, PENG XH, CHEN Z, SUN GX. Mineral weathering and element cycle in soil-microbial-plant system[J]. Scientia Sinica:Terrae, 2014, 44(6):1107-1116(in Chinese).
    [37] 邱添, 刘世名. 植物病原真菌铁离子信号功能机制研究进展[J/OL]. 分子植物育种, 2021, 19:1-15. (2021-08-03). https://kns.cnki.net/kcms/detail/46.1068. S.20210803.0922.004.html. QIU T, LIU SM. Research progress on the function and mechanism of iron ions signaling in plant pathogenic fungi[J/OL]. Molecular Plant Breeding, 2021, 19:1-15. (2021-08-03).https://kns.cnki.net/kcms/detail/46.1068.S.20210803.0922.004.html (in Chinese).
    [38] 李善家, 王福祥, 从文倩, 魏明, 王军强, 崔莉娟, 王子濠. 河西走廊荒漠土壤微生物群落结构及环境响应[J/OL]. 土壤学报, 2022, 75:1-12, DOI:10. 11766/trxb202110120235. LI SJ, WANG FX, CONG WQ, WEI M, WANG JQ, CUI LJ, WANG ZH. Microbial community structure and environmental response of desert soil in Hexi Corridor[J]. Acta Pedologica Sinica, 2022, 75:1-12, DOI:10.11766/trxb202110120235(in Chinese).
    [39] 施秀珍, 王建青, 黄志群, 贺纪正. 树种多样性对土壤微生物群落结构和元素生物地球化学循环的影响研究进展[J]. 生态学报, 2022, 42(15):6092-6102. SHI XZ, WANG JQ, HUANG ZQ, HE JZ. Research progresses in the effects of tree species diversity on soil microbial communities and biogeochemical cycling of elements[J]. Acta Ecologica Sinica, 2022, 42(15):6092-6102(in Chinese).
    [40] GUILLITTE O. Bioreceptivity:a new concept for building ecology studies[J]. Science of the Total Environment, 1995, 167(1/2/3):215-220.
    [41] BARDGETT RD, BOWMAN WD, KAUFMANN R, SCHMIDT SK. A temporal approach to linking aboveground and belowground ecology[J]. Trends in Ecology & Evolution, 2005, 20(11):634-641.
    [42] FARRAR J, HAWES M, JONES D, LINDOW S. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003, 84(4):827-837.
    [43] BALDRIAN P. Forest microbiome:diversity, complexity and dynamics[J]. FEMS Microbiology Reviews, 2017, 41(2):109-130.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHAO Xiangwei, CHEN Jin, LI Fangbing, YAN Lingbin, YU Lifei. Community structure of fungi in crust of carbonatite weathered for different time. [J]. Acta Microbiologica Sinica, 2023, 63(3): 1152-1167

Copy
Share
Article Metrics
  • Abstract:279
  • PDF: 713
  • HTML: 775
  • Cited by: 0
History
  • Received:July 18,2022
  • Adopted:October 17,2022
  • Online: March 08,2023
  • Published: March 04,2023
Article QR Code