Synergistic mechanism of endophytic fungi and host plants against arsenic stress
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [80]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) are the two key types of root symbiotic fungi that enhance plant growth and resistance of plants to heavy metal stress. Arsenic (As) and As compounds are highly toxic, which accumulate in plants and then enter biologic chain. Our team has been committed to the study of relationship between endophytic fungi and the growth, synthesis of active substances, and arsenic absorption and accumulation of medicinal plants and has made some progress. According to our previous research outcomes and available research results, we summarized the role of AMF colonization in the growth and As uptake and accumulation in host plants under As stress, expounded the responses of host plants to AMF regulation under As stress in terms of physiological activities, antioxidant system, hormone level, and transcription level. In addition, 7 synergistic regulatory mechanisms involved in improving the As resistance were summarized at cellular level: ‘growth dilution effect’, ‘isolation of hyphae’, ‘chelating and filtration’, ‘mycorrhizal immobilization’, ‘transporter inhibition’, ‘biotransformation’, and ‘protecting the host and reducing oxidative stress’. The interaction among mechanisms was plotted. There are limited studies on the regulation of As stress by DSE-host plants. We found that the mechanism of DSE in enhancing arsenic tolerance of plants is similar to that of AMF. Our work has important reference value for studying synergistic antagonistic mechanism of endophytic fungi and host plants against As stress, alleviating As-polluted soil, implementing ecological agriculture or ecological planting of Chinese medicinal materials, and reducing As accumulation in key parts of plants.

    Reference
    [1] 龙良俊, 宋雪婷, 潘宝宇, 龙涛, 刘诗珂, 周海波, 李越, 廖梓呈, 宋梦雨. 砷污染土壤修复技术综述[J]. 应用化工, 2020, 49(10):2649-2653. LONG LJ, SONG XT, PAN BY, LONG T, LIU SK, ZHOU HB, LI Y, LIAO ZC, SONG MY. Review on remediation technologies for arsenic-contaminated soil[J]. Applied Chemical Industry, 2020, 49(10):2649-2653(in Chinese).
    [2] ZHOU YT, NIU L, LIU K, YIN S, LIU W. Arsenic in agricultural soils across China:distribution pattern, accumulation trend, influencing factors, and risk assessment[J]. Science of the Total Environment, 2018, 616/617:156-163.
    [3] 刘逸竹. 丛枝菌根共生体系中砷的吸收和形态转化及与宿主抗砷毒的关系[D]. 武汉:华中农业大学硕士学位论文, 2014. LIU YZ. Absorption and speciation of arsenic in symbiosis of plant and arbuscular mycorrhizal fungi and their relation to the arsenic detoxicity[D]. Wuhan:Master's Thesis of Huazhong Agricultural University, 2014(in Chinese).
    [4] 李泽东. 不同磷水平处理对三七砷吸收的影响及调控机制研究[D]. 昆明:云南中医药大学硕士学位论文, 2019. LI ZD. Study on regulation mechanism and effects of different phosphorus levels on the arsenic absorptionof Panax notoginseng[D]. Kunming:Master's Thesis of Yunnan University of Traditional Chinese Medicine, 2019(in Chinese).
    [5] 王桥美, 严亮, 胡先奇, 彭文书, 杨瑞娟, 刘丽, 刘沛, 东晔. 茶轮斑病对茶树叶片内生真菌群落结构的影响[J]. 微生物学报, 2021, 61(9):2949-2961. WANG QM, YAN L, HU XQ, PENG WS, YANG RJ, LIU L, LIU P, DONG Y. Effects of tea grey blight on the community structure of endophytic fungi in tea leaves[J]. Acta Microbiologica Sinica, 2021, 61(9):2949-2961(in Chinese).
    [6] 曹冠华, 张雪, 陈迪, 李莉, 张兆传, 顾雯, 王希付, 贺森. 三七根内生真菌重金属耐性菌株筛选及分类学鉴定[J]. 中成药, 2020, 42(9):2510-2513. CAO GH, ZHANG X, CHEN D, LI L, ZHANG ZC, GU W, WANG XF, HE S. Screening and taxonomic identification of heavy metal tolerance strains of endophytic fungi from roots of Panax notoginseng[J]. Chinese Traditional Patent Medicine, 2020, 42(9):2510-2513(in Chinese).
    [7] 宋培玲, 郝丽芬, 李欣州, 张键, 云晓鹏, 包玉英, 李子钦. 丛枝菌根真菌特性及其提高植物抗病性的研究进展[J]. 内蒙古农业科技, 2013, 41(3):84-85, 106. SONG PL, HAO LIFEN, LI XINZHOU, ZHANG JIAN, YUN XIAOPENG, BAO YUYING, LI ZIQIN. The characteristics of arbuscular mycorrhizal fungi and improvement of plant disease resistance[J]. Inner Mongolia Agricultural Science and Technology, 2013, 41(3):84-85, 106(in Chinese).
    [8] GAUR A, ADHOLEYA A. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils[J]. Current Science, 2004, 86(04):528-534.
    [9] 曹冠华, 张雪, 顾雯, 陈迪, 和志伟, 陈耔翰, 俞捷, 贺森. 不同产地滇黄精丛枝菌根真菌、深色有隔内生真菌定殖调查及与主要功效成分含量相关性分析[J]. 中草药, 2019, 50(16):3930-3936. CAO GH, ZHANG X, GU W, CHEN D, HE ZW, CHEN ZH, YU J, HE S. Colonization investigation of arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in roots of Polygonatum kingianum and their correlations with content of main functional components in rhizomes[J]. Chinese Traditional and Herbal Drugs, 2019, 50(16):3930-3936(in Chinese).
    [10] CAO GH, HE S, CHEN D, LI T, ZHAO ZW. EpABC genes in the adaptive responses of Exophiala pisciphila to metal stress:functional importance and relation to metal tolerance[J]. Applied and Environmental Microbiology, 2019, 85(23):e01844.
    [11] 曹冠华, 张雪, 马诗婷, 王希付, 俞捷, 顾雯, 赵荣华, 贺森. 阳春砂仁根内生真菌解磷功能评价及分类学鉴定[J]. 中草药, 2020, 51(5):1316-1323. CAO GH, ZHANG X, MA ST, WANG XF, YU J, GU W, ZHAO RH, HE S. Phosphate-solubilizing function evaluation and taxonomic identification of endophytic fungi separated from roots of Amomum villosum[J]. Chinese Traditional and Herbal Drugs, 2020, 51(5):1316-1323(in Chinese).
    [12] 王希付, 张雪, 赵荣华, 俞捷, 顾雯, 李锐, 曹冠华, 贺森. 丛枝菌根真菌在药用植物中的作用及机制研究进展[J]. 中国实验方剂学杂志, 2020, 26(11):217-226. WANG XF, ZHANG X, ZHAO RH, YU J, GU W, LI R, CAO GH, HE S. Effect and mechanism of arbuscular mycorrhizal fungi in herbs[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(11):217-226(in Chinese).
    [13] 张雪. 不同磷水平下接种AMF对滇黄精功效成分积累的影响及调控机制研究[D]. 昆明:云南中医药大学硕士学位论文, 2021. ZHANG X. Study on the effects of AMF colonization on the accumulation of Polygonatum kingianum functional components under different phosphate levels and its regulation mechanism[D]. Kunming:Master's Thesis of Yunnan University of Traditional Chinese Medicine, 2021(in Chinese).
    [14] LI JL, SUN YQ, ZHANG X, HU YJ, LI T, ZHANG XM, WANG Z, WU SL, WU ZX, CHEN BD. A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization[J]. Chemosphere, 2018, 209:392-400.
    [15] 宋榕洁, 唐艳葵, 陈玲, 王生业, 李坤. 超富集植物对镉、砷的累积特性及耐性机制研究进展[J]. 江苏农业科学, 2015, 43(6):6-10. SONG RJ, TANG YK, CHEN L, WANG SY, LI K. Research progress on accumulation characteristics and tolerance mechanism of hyperaccumulator to cadmium and arsenic[J]. Jiangsu Agricultural Sciences, 2015, 43(6):6-10(in Chinese).
    [16] LI NN, WANG JC, SONG WY. Arsenic uptake and translocation in plants[J]. Plant and Cell Physiology, 2016, 57(1):4-13.
    [17] ZHAN FD, LI B, JIANG M, YUE XR, HE YM, XIA YS, WANG YS. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize[J]. Environmental Science and Pollution Research, 2018, 25(24):24338-24347.
    [18] YU Y, ZHANG SZ, HUANG HL, WU NY. Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi[J]. Communications in Soil Science and Plant Analysis, 2010, 41(6):735-743.
    [19] XIA YS, CHEN BD, PETER C, ANDREW SF, WANG YS, LI XL. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus[J]. Journal of Environmental Sciences, 2007, 19(10):1245-1251.
    [20] 赵宁宁. Ce真菌侵染下玉米、蜈蚣草吸收As的差异性机理研究[D]. 南宁:广西大学硕士学位论文, 2019. ZHAO NN. Differential mechanisms of As uptake by maize and Pteris vittata L. under Ce fungi colonization[D]. Nanning:Master's Thesis of Guangxi University, 2019(in Chinese).
    [21] CHEN BD, ZHU YG, SMITH FA. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil[J]. Chemosphere, 2006, 62(9):1464-1473.
    [22] LIU Y, PETER C, ZHANG JL, LI XL. Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus[J]. Environmental and Experimental Botany, 2009, 66(3):435-441.
    [23] 刘凯洋, 邱智军, 张巧明, 张盎然, 龚明贵. 丛枝菌根真菌对砷胁迫下棉花根系形态和生理特征的影响[J]. 西北植物学报, 2021, 41(7):1188-1198. LIU KY, QIU ZJ, ZHANG QM, ZHANG AR, GONG MG. Effect of arbuscular mycorrhizal fungi on root morphological and physiological characteristics of cotton under arsenic stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(7):1188-1198(in Chinese).
    [24] JERUSA S, CLAUDIA RGL, WESLEY MR, EDUARDO A, LUIZ RGG. Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil[J]. Journal of Hazardous Materials, 2013, 262:1245-1258.
    [25] 张志芳, 豁泽春. 镉、砷胁迫下接种丛枝菌根真菌对烤烟镉、砷累积及生理特性的影响[J]. 河南农业科学, 2022, 51(2):47-56. ZHANG ZF, HUO ZC. Effects of arbuscular mycorrhizal fungi inoculation on cadmium, arsenic accumulation and physiological characteristics of flue-cured tobacco under cadmium and arsenic stress[J]. Journal of Henan Agricultural Sciences, 2022, 51(2):47-56(in Chinese).
    [26] DEGOLA F, FATTORINI L, BONA E, SPRIMUTO CT, ARGESE E, BERTA G, TOPPI LS. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents[J]. Plant Physiology and Biochemistry, 2015, 92:11-18.
    [27] XU PL, CHRISTIE P, LIU Y, ZHANG JL, LI XL. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake[J]. Environmental Pollution, 2008, 156(1):215-220.
    [28] CHEN BD, XIAO XY, ZHU YG, ANDREW Smith F, XIE MZ, SMITH SE. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn[J]. Science of the Total Environment, 2007, 379(2/3):226-234.
    [29] JANKONG P, VISOOTTIVISETH P. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil[J]. Chemosphere, 2008, 72(7):1092-1097.
    [30] GONZALEZ-CHAVEZ C, HARRIS PJ, DODD J, MEHARG AA. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus[J]. The New Phytologist, 2002, 155(1):163-171.
    [31] LIU Y, ZHU YG, CHEN BD, CHRISTIE P, LI XL. Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions[J]. Environment International, 2005, 31(6):867-873.
    [32] ZHANG QM, GONG MG, LIU KY, CHEN YL, YUAN JF, CHANG QS. Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils[J]. Frontiers in Microbiology, 2020, 11:1428.
    [33] GARG N, PRIYANKA S. The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil[J]. Scientia Horticulturae, 2012, 143:92-101.
    [34] SADEQUE AHMED FR, ALEXANDER IJ, MWINYIHIJA M, KILLHAM K. Effect of superphosphate and arbuscular mycorrhizal fungus Glomus mosseae on phosphorus and arsenic uptake in lentil (Lens culinaris L.)[J]. Water, Air, & Soil Pollution, 2011, 221(1):169-182.
    [35] LI JL, CHEN BD, ZHANG X, HAO ZP, ZHANG XM, ZHU YG. Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions[J]. Journal of Hazardous Materials, 2021, 413:125390.
    [36] ULTRA VU, TANAKA S, SAKURAI K, IWASAKI K. Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere[J]. Plant and Soil, 2007, 290(1/2):29-41.
    [37] LI H, CHEN XW, WONG MH. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains[J]. Chemosphere, 2016, 145:224-230.
    [38] RIAZ M, KAMRAN M, FANG YZ, WANG QQ, CAO HY, YANG GL, DENG LL, WANG YJ, ZHOU YY, ANASTOPOULOS I, WANG XR. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils:a critical review[J]. Journal of Hazardous Materials, 2021, 402:123919.
    [39] 罗巧玉, 王晓娟, 林双双, 李媛媛, 孙莉, 金梁. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, 2013, 33(13):3898-3906. LUO QY, WANG XJ, LIN SS, LI YY, SUN L, JIN L. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(13):3898-3906(in Chinese).
    [40] 张春楠, 张瑞芳, 王红, 周大迈, 王鑫鑫. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报, 2020, 47(11):3880-3891. ZHANG CN, ZHANG RF, WANG H, ZHOU DM, WANG XX. Effects of arbuscular mycorrhizal fungi on abiotic stress tolerance in crops:a review[J]. Microbiology China, 2020, 47(11):3880-3891(in Chinese).
    [41] SHARMA S, ANAND G, SINGH N, KAPOOR R. Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism[J]. Frontiers in Plant Science, 2017, 8:906.
    [42] BUSTINGORRI C, BALESTRASSE K, LAVADO RS. Effects of high arsenic and fluoride soil concentrations on soybean plants[J]. Phyton, 2015, 84(2):407-416.
    [43] SPAGNOLETTI FN, LAVADO RS, GIACOMETTI R. Interaction of plants and arbuscular mycorrhizal fungi in responses to arsenic stress:a collaborative tale useful to manage contaminated soils[M]//Mechanisms of Arsenic Toxicity and Tolerance in Plants. Singapore:Springer Singapore, 2018:239-255.
    [44] 代红洋, 柏旭, 李晓岗, 张兴开, 罗霖, 张熙琪, 曹冠华, 贺森. 植物激素在三萜类化合物生物合成中的作用及调控机制研究进展[J]. 中草药, 2021, 52(20):6391-6402. DAI HY, BAI X, LI XG, ZHANG XK, LUO L, ZHANG XQ, CAO GH, HE S. Research progress on roles of phytohormone in biosynthesis of triterpenoids and their regulatory mechanisms[J]. Chinese Traditional and Herbal Drugs, 2021, 52(20):6391-6402(in Chinese).
    [45] ABD_ALLAH EF, HASHEM A, ALQARAWI AA, BAHKALI AH, ALWHIBI MS. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress[J]. Saudi Journal of Biological Sciences, 2015, 22(3):274-283.
    [46] BI YL, ZHANG J, SONG ZH, WANG ZG, QIU L, HU JJ, GONG YL. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J]. Science of the Total Environment, 2019, 652:398-405.
    [47] MEIER S, BORIE F, BOLAN N, CORNEJO P. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7):741-775.
    [48] GONZÁLEZ-CHÁVEZ MD, ORTEGA-LARROCEA MD, CARRILLO-GONZÁLEZ R, LÓPEZ-MEYER M, XOCONOSTLE-CÁZARES B, GOMEZ SK, HARRISON MJ, FIGUEROA-LÓPEZ AM, MALDONADO-MENDOZA IE. Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12):1197-1209.
    [49] 李景龙, 孙玉青, 陈保冬, 李涛, 胡亚军, 张莘. 丛枝菌根真菌砷酸盐还原酶基因RiarsC的克隆和功能分析[J]. 生态毒理学报, 2018, 13(3):71-77. LI JL, SUN YQ, CHEN BD, LI T, HU YJ, ZHANG X. Cloning and characterization of arsenate reductase gene RiarsC from arbuscular mycorrhizal fungi[J]. Asian Journal of Ecotoxicology, 2018, 13(3):71-77(in Chinese).
    [50] CHRISTOPHERSEN HM, SMITH FA, SMITH SE. Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway[J]. The New Phytologist, 2009, 184(4):962-974.
    [51] ZHANG QM, GONG M, XU SS, ZHANG AR, YUAN JF, CHANG Q. Arbuscular mycorrhizal fungi alleviate arsenic toxicity in Sophora viciifolia hance. by improving the growth, photosynthesis, reactive oxygen species and gene expression of phytochelatin synthase[J]. Preprint (version 1) Available at Research Square, 2021. doi.org/10.21203/rs.3.rs-137602/v1.
    [52] SPAGNOLETTI F, LAVADO R. The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants[J]. Agronomy, 2015, 5(2):188-199.
    [53] WU SL, ZHANG X, HUANG LB, CHEN BD. Arbuscular mycorrhiza and plant chromium tolerance[J]. Soil Ecology Letters, 2019, 1(3):94-104.
    [54] JOUTEY NT, SAYEL H, BAHAFID W, el GHACHTOULI N. Mechanisms of hexavalent chromium resistance and removal by microorganisms[M]//Reviews of Environmental Contamination and Toxicology Volume 233. Cham:Springer International Publishing, 2014:45-69.
    [55] LI WW, YU HQ. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Bioresource Technology, 2014, 160:15-23.
    [56] 祖艳群, 卢鑫, 湛方栋, 胡文友, 李元. 丛枝菌根真菌在土壤重金属污染植物修复中的作用及机理研究进展[J]. 植物生理学报, 2015, 51(10):1538-1548. ZU YQ, LU X, ZHAN FD, HU WY, LI Y. A review on roles and mechanisms of arbuscular mycorrhizal fungi in phytoremediation of heavy metals-polluted soils[J]. Plant Physiology Journal, 2015, 51(10):1538-1548(in Chinese).
    [57] CORNEJO P, PÉREZ-TIENDA J, MEIER S, VALDERAS A, BORIE F, AZCÓN-AGUILAR C, FERROL N. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments[J]. Soil Biology and Biochemistry, 2013, 57:925-928.
    [58] FU XP, DOU CM, CHEN YX, CHEN XC, SHI JY, YU MG, XU J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J]. Journal of Hazardous Materials, 2011, 186(1):103-107.
    [59] ABDELHAMEED RE, METWALLY RA. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis[J]. International Journal of Phytoremediation, 2019, 21(7):663-671.
    [60] COZZOLINO V, PIGNA M, MEO VD, CAPORALE AG, VIOLANTE A. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions[J]. Applied Soil Ecology, 2010, 45(3):262-268.
    [61] CAO GH, LI ZD, WANG XF, ZHANG X, ZHAO RH, GU W, CHEN D, YU J, HE S. Phosphate transporters, PnPht1;1 and PnPht1;2 from Panax notoginseng enhance phosphate and arsenate acquisition[J]. BioMed Central Plant Biology, 2020, 20(1):1-14.
    [62] CAO GH, WANG XF, LI ZD, ZHANG X, LI XG, GU W, ZHANG F, YU J, HE S. A Panax notoginseng phosphate transporter, PnPht1;3, greatly contributes to phosphate and arsenate uptake[J]. Functional Plant Biology:FPB, 2022, 49(3):259-271.
    [63] ZHAO FJ, MA JF, MEHARG AA, MCGRATH SP. Arsenic uptake and metabolism in plants[J]. The New Phytologist, 2009, 181(4):777-794.
    [64] ULTRA VUY, TANAKA S, SAKURAI K, IWASAKI K. Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.)[J]. Soil Science and Plant Nutrition, 2007, 53(4):499-508.
    [65] ZHANG X, REN BH, WU SL, SUN YQ, LIN G, CHEN BD. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil[J]. Chemosphere, 2015, 119:224-230.
    [66] BAN YH, XU ZY, YANG YR, ZANG HH, CHEN H, TANG M. Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.)[J]. Pedosphere, 2017, 27(2):283-292.
    [67] ZHANG Y, LI T, ZHAO ZW. Colonization characteristics and composition of dark septate endophytes (DSE) in a lead and zinc slag heap in southwest China[J]. Soil and Sediment Contamination:an International Journal, 2013, 22(5):532-545.
    [68] ZHAO DK, LI T, SHEN M, WANG JL, ZHAO ZW. Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila:evidence from RNA-seq data[J]. Microbiological Research, 2015, 170:27-35.
    [69] 曹冠华, 张雪, 陈迪, 柏旭, 陆志强, 张波, 贺森. 三七丛枝菌根真菌(AMF)和深色有隔内生真菌(DSE)定殖调查及与皂苷含量相关性分析[J]. 中药材, 2019, 42(7):1509-1512. CAO GH, ZHANG X, CHEN D, BAI X, LU ZQ, ZHANG B, HE S. Colonization of arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in the roots of Panax notoginseng and correlation analysis with saponins content[J]. Journal of Chinese Medicinal Materials, 2019, 42(7):1509-1512(in Chinese).
    [70] JIA HL, WANG XH, WEI T, ZHOU R, MUHAMMAD H, HUA L, REN XH, GUO JK, DING YZ. Accumulation and fixation of Cd by tomato cell wall pectin under Cd stress[J]. Environmental and Experimental Botany, 2019, 167:103829.
    [71] SHEN M, SCHNEIDER H, XU RB, CAO GH, ZHANG HB, LI T, ZHAO ZW. Dark septate endophyte enhances maize cadmium (Cd) tolerance by the remodeled host cell walls and the altered Cd subcellular distribution[J]. Environmental and Experimental Botany, 2020, 172:104000.
    [72] ZHU LL, LI T, WANG CJ, ZHANG XR, XU LJ, XU RB, ZHAO ZW. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress[J]. Environmental Science and Pollution Research, 2018, 25(35):35232-35241.
    [73] REDMAN RS, SHEEHAN KB, STOUT RG, RODRIGUEZ RJ, HENSON JM. Thermotolerance generated by plant/fungal symbiosis[J]. Science, 2002, 298(5598):1581.
    [74] HE YM, YANG ZX, LI MR, JIANG M, ZHAN FD, ZU YQ, LI T, ZHAO ZW. Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress[J]. Environmental Science and Pollution Research, 2017, 24(22):18494-18504.
    [75] 毕银丽, 解琳琳. 丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用[J]. 微生物学报, 2021, 61(1):58-67. BI YL, XIE LL. Functions of arbuscular mycorrhizal fungi and dark septate endophytes in ecological restoration[J]. Acta Microbiologica Sinica, 2021, 61(1):58-67(in Chinese).
    [76] WANG JL, LI T, LIU GY, SMITH JM, ZHAO ZW. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress:physiological, cytological and genic aspects[J]. Scientific Reports, 2016, 6:22028.
    [77] WEI YF, Li T, Li LF, Wang JL, Cao GH, Zhao ZW. Functional and transcript analysis of a novel metal transporter gene EpNramp from a dark septate endophyte (Exophiala pisciphila)[J]. Ecotoxicology and Environmental Safety, 2016, 124:363-368.
    [78] 曹冠华, 柏旭, 陈迪, 张晓蓉, 贺森. ABC转运蛋白结构特点及在植物和真菌重金属耐性中的作用与机制[J]. 农业生物技术学报, 2016, 24(10):1617-1628. CAO GH, BAI X, CHEN D, ZHANG XR, HE S. Structure characteristics of ABC transporter protein and the function and mechanism on enhancing resistance of plants and fungi to heavy metals[J]. Journal of Agricultural Biotechnology, 2016, 24(10):1617-1628(in Chinese).
    [79] 曹冠华. 嗜鱼外瓶霉(Exophiala pisciphila)ABC转运蛋白基因与宿主重金属耐性的研究[D]. 昆明:云南大学博士学位论文, 2017. CAO GH. Functions and the vital roles of ABC transporter protein-encoding genes in the tolerance of Exophiala pisciphila to heavy metals[D]. Kunming:Doctoral Dissertation of Yunnan University, 2017(in Chinese).
    [80] 贺森, 曹冠华, 赵荣华, 俞捷, 顾雯. 一种AMF菌剂的应用:CN113508731A[P]. 2021-10-19. HE S, CAO GH, ZHAO RH, YU J, GU W. Application of an AMF inoculant:CN113508731A[P]. 2021-10-19(in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

BI Yue, DAI Hongyang, ZHANG Xingkai, CAO Guanhua, HE Sen. Synergistic mechanism of endophytic fungi and host plants against arsenic stress. [J]. Acta Microbiologica Sinica, 2023, 63(6): 2369-2384

Copy
Share
Article Metrics
  • Abstract:252
  • PDF: 859
  • HTML: 642
  • Cited by: 0
History
  • Received:October 02,2022
  • Revised:December 07,2022
  • Online: June 06,2023
  • Published: June 04,2023
Article QR Code