A standard operating procedure for identification of drug targets in living cells based on cell thermal shift assay (CETSA)
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] Cell thermal shift assay (CETSA) is a biophysical technique allowing the direct study of drug (ligand) binding to proteins (targets) in cells and tissues by measuring variation in the proteins’ thermal stability upon ligand binding. In this paper, taking panobinostat, a drug targeting multiple myeloma, as an example, we developed a standard operating procedure for the identification of drug targets in K562 cells with Western blotting and CETSA. [Methods] Experimental procedures included treating cells with the drug, heat treatment of cells, cell lysis, total soluble protein extraction and quantitation by Western blotting with specific antibodies. [Results] Through quantification by Western blotting and curve fitting, we obtained the CETSA melting curve and isothermal dose-response curve of histone deacetylase (HDAC1), syntaxin-4 (STX4), and tetratricopeptide repeat protein 38 (TTC38) in K562 cells, respectively.[Conclusion] HDAC1, STX4, and TTC38 were the targets of panobinostat in K562 cells. A standard operating procedure for identifying the target proteins in living cells was established by CESTA and Western blotting. The experiment can be completed in 2-3 d.

    Reference
    [1] SCHENONE M, DANČÍK V, WAGNER BK, CLEMONS PA. Target identification and mechanism of action in chemical biology and drug discovery[J]. Nature Chemical Biology, 2013, 9(4):232-240.
    [2] MARTINEZ MOLINA D, JAFARI R, IGNATUSHCHENKO M, SEKI T, LARSSON EA, DAN C, SREEKUMAR L, CAO YH, NORDLUND P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science, 2013, 341(6141):84-87.
    [3] JAFARI R, ALMQVIST H, AXELSSON H, IGNATUSHCHENKO M, LUNDBÄCK T, NORDLUND P, MOLINA DM. The cellular thermal shift assay for evaluating drug target interactions in cells[J]. Nature Protocols, 2014, 9(9):2100-2122.
    [4] SEMISOTNOV GV, RODIONOVA NA, RAZGULYAEV OI, UVERSKY VN, GRIPAS' AF, GILMANSHIN RI. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe[J]. Biopolymers, 1991, 31(1):119-128.
    [5] HUYNH K, PARTCH CL. Analysis of protein stability and ligand interactions by thermal shift assay[J]. Current Protocols in Protein Science, 2015, 79(1):28.9.1-28.9.14.
    [6] NGUYEN C, WEST GM, GEOGHEGAN KF. Emerging methods in chemoproteomics with relevance to drug discovery[J]. Methods in Molecular Biology (Clifton, N J), 2017, 1513:11-22.
    [7] FRANKEN H, MATHIESON T, CHILDS D, SWEETMAN GMA, WERNER T, TÖGEL I, DOCE C, GADE S, BANTSCHEFF M, DREWES G, REINHARD FBM, HUBER W, SAVITSKI MM. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry[J]. Nature Protocols, 2015, 10(10):1567-1593.
    [8] BECHER I, DITTMANN A, SAVITSKI MM, HOPF C, DREWES G, BANTSCHEFF M. Chemoproteomics reveals time-dependent binding of histone deacetylase inhibitors to endogenous repressor complexes[J]. ACS Chemical Biology, 2014, 9(8):1736-1746.
    [9] HUANG J. Tracking drugs[J]. The New England Journal of Medicine, 2013, 369(12):1168-1169.
    [10] NIESEN FH, BERGLUND H, VEDADI M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability[J]. Nature Protocols, 2007, 2(9):2212-2221.
    [11] TSYTLONOK M, ITZHAKI LS. The how's and why's of protein folding intermediates[J]. Archives of Biochemistry and Biophysics, 2013, 531(1/2):14-23.
    [12] HUANG JX, LEE G, CAVANAUGH KE, CHANG JW, GARDEL ML, MOELLERING RE. High throughput discovery of functional protein modifications by hotspot thermal profiling[J]. Nature Methods, 2019, 16(9):894-901.
    [13] HUANG Y, FURUNO M, ARAKAWA T, TAKIZAWA S, de HOON M, SUZUKI H, ARNER E. A framework for identification of on- and off-target transcriptional responses to drug treatment[J]. Scientific Reports, 2019, 9:17603.
    [14] GOROSHCHUK O, KOLOSENKO I, KUNOLD E, VIDARSDOTTIR L, PIRMORADIAN M, AZIMI A, JAFARI R, PALM-APERGI C. Thermal proteome profiling identifies PIP4K2A and ZADH2 as off-targets of polo-like kinase 1 inhibitor volasertib[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2021, 35(7):e21741.
    [15] SAEI AA, BEUSCH CM, SABATIER P, WELLS JA, GHARIBI H, MENG ZW, CHERNOBROVKIN A, RODIN S, NÄREOJA K, THORSELL AG, KARLBERG T, CHENG Q, LUNDSTRÖM SL, GAETANI M, VÉGVÁRI Á, ARNÉR ESJ, SCHÜLER H, ZUBAREV RA. System-wide identification and prioritization of enzyme substrates by thermal analysis[J]. Nature Communications, 2021, 12:1296.
    [16] SAVITSKI MM, ZINN N, FAELTH-SAVITSKI M, POECKEL D, GADE S, BECHER I, MUELBAIER M, WAGNER AJ, STROHMER K, WERNER T, MELCHERT S, PETRETICH M, RUTKOWSKA A, VAPPIANI J, FRANKEN H, STEIDEL M, SWEETMAN GM, GILAN O, LAM EYN, DAWSON MA, et al. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis[J]. Cell, 2018, 173(1):260-274.e25.
    [17] SMITS AH, ZIEBELL F, JOBERTY G, ZINN N, MUELLER WF, CLAUDER-MÜNSTER S, EBERHARD D, FÄLTH SAVITSKI M, GRANDI P, JAKOB P, MICHON AM, SUN H, TESSMER K, BÜRCKSTÜMMER T, BANTSCHEFF M, STEINMETZ LM, DREWES G, HUBER W. Biological plasticity rescues target activity in CRISPR knock outs[J]. Nature Methods, 2019, 16(11):1087-1093.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Li, LIU Jingfang, LI Weilin, LI Erwei, SUN Shutao, LI Juan, LUO Yuanming. A standard operating procedure for identification of drug targets in living cells based on cell thermal shift assay (CETSA). [J]. Acta Microbiologica Sinica, 2023, 63(6): 2488-2501

Copy
Share
Article Metrics
  • Abstract:879
  • PDF: 3293
  • HTML: 2273
  • Cited by: 0
History
  • Received:September 16,2022
  • Revised:February 08,2023
  • Online: June 06,2023
  • Published: June 04,2023
Article QR Code