Research progress in non-structural proteins NS2B-NS3 and NS5 of tick-borne encephalitis virus
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [66]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Tick-borne encephalitis virus is the pathogen of tick-borne encephalitis, which causes severe central nervous system symptoms. The number of tick-borne encephalitis cases reported annually in Europe, Russian Far East, Japan, and northern China reaches 10 000- 12 000, and the incidence is gradually increasing in China and several European countries. This disease is becoming a potential hazard to human. Active immunization is an effective measure to prevent infection, and vaccines with high safety have been developed in multiple countries including China. However, the vaccination is limited in the provinces where tick-borne encephalitis is popular. The design of specific antivirals may be a feasible way for the treatment of this disease. The non-structural proteins NS2B-NS3 and NS5 of tick-borne encephalitis virus play key roles in viral genome replication, capping, and host immunomodulation, thus becoming key targets for antiviral development. In this review, we outlined the three-dimensional structures and the development of inhibitors of NS2B-NS3 and NS5 of tick-borne encephalitis virus. This review provides a reference for probing into the molecular mechanism of tick-borne encephalitis virus infection and the development of antivirals.

    Reference
    [1] van LEUR SW, HEUNIS T, MUNNUR D, SANYAL S. Pathogenesis and virulence of flavivirus infections[J]. Virulence, 2021, 12(1):2814-2838.
    [2] KRÍZ B, BENES C, DANIEL M. Alimentary transmission of tick-borne encephalitis in the Czech Republic (1997‒2008)[J]. Epidemiologie, Mikrobiologie, Imunologie:Casopis Spolecnosti Pro Epidemiologii a Mikrobiologii Ceske Lekarske Spolecnosti J E Purkyne, 2009, 58(2):98-103.
    [3] LIPOWSKI D, POPIEL M, PERLEJEWSKI K, NAKAMURA S, BUKOWSKA-OŚKO I, RZADKIEWICZ E, DZIECIĄTKOWSKI T, MILECKA A, WENSKI W, CISZEK M, DĘBSKA-ŚLIZIEŃ A, IGNACAK E, CORTES KC, PAWEŁCZYK A, HORBAN A, RADKOWSKI M, LASKUS T. A cluster of fatal tick-borne encephalitis virus infection in organ transplant setting[J]. The Journal of Infectious Diseases, 2017, 215(6):896-901.
    [4] KAISER R. Tick-borne encephalitis[J]. Infectious Disease Clinics of North America, 2008, 22(3):561-575.
    [5] BOGOVIC P. Tick-borne encephalitis:a review of epidemiology, clinical characteristics, and management[J]. World Journal of Clinical Cases, 2015, 3(5):430-441.
    [6] BONDARYUK AN, SIDOROVA EA, ADELSHIN RV, ANDAEV EI, BALAKHONOV SV. Reporting of new tick-borne encephalitis virus strains isolated in Eastern Siberia (Russia) in 1960‒2011 and explaining them in an evolutionary context using Bayesian phylogenetic inference[J]. Ticks and Tick-Borne Diseases, 2020, 11(5):101496.
    [7] TABA P, SCHMUTZHARD E, FORSBERG P, LUTSAR I, LJØSTAD U, MYGLAND Å, LEVCHENKO I, STRLE F, STEINER I. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis[J]. European Journal of Neurology, 2017, 24(10):1214-e61.
    [8] PULKKINEN LIA, BUTCHER SJ, ANASTASINA M. Tick-borne encephalitis virus:a structural view[J]. Viruses, 2018, 10(7):350.
    [9] SUN RX, LAI SJ, YANG Y, LI XL, LIU K, YAO HW, ZHOU H, LI Y, WANG LP, MU D, YIN WW, FANG LQ, YU HJ, CAO WC. Mapping the distribution of tick-borne encephalitis in mainland China[J]. Ticks and Tick-Borne Diseases, 2017, 8(4):631-639.
    [10] 陈晓菁. 中国蜱传脑炎流行病学分析及北方地区蜱传病毒调查[D]. 广州:暨南大学硕士学位论文, 2020. CHEN XJ. Epidemiology of tick-borne encephalitis in China and investigation of tick-borne virus in northern China[D]. Guangzhou:Master's Thesis of Jinan University, 2020 (in Chinese).
    [11] FÜZIK T, FORMANOVÁ P, RŮŽEK D, YOSHII K, NIEDRIG M, PLEVKA P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody[J]. Nature Communications, 2018, 9:436.
    [12] VELAY A, PAZ M, CESBRON M, GANTNER P, SOLIS M, SOULIER E, ARGEMI X, MARTINOT M, HANSMANN Y, FAFI-KREMER S. Tick-borne encephalitis virus:molecular determinants of neuropathogenesis of an emerging pathogen[J]. Critical Reviews in Microbiology, 2019, 45(4):472-493.
    [13] 温中华. 蜱传脑炎病毒中和抗体研究[D]. 北京:中国人民解放军军事医学科学院硕士学位论文, 2017. WEN ZH. Study on neutralizing antibodies of tick-borne encephalitis virus[D]. Beijing:Master's Thesis of Academy of Military Medical Sciences, 2017 (in Chinese).
    [14] Latanova A, Starodubova E, Karpov V. Flaviviridae nonstructural proteins:the role in molecular mechanisms of triggering inflammation[J]. Viruses, 2022, 14(8):1808.
    [15] van der ELSEN K, CHEW BLA, HO JS, LUO DH. Flavivirus nonstructural proteins and replication complexes as antiviral drug targets[J]. Current Opinion in Virology, 2023, 59:101305.
    [16] BRECHER M, ZHANG J, LI HM. The flavivirus protease as a target for drug discovery[J]. Virologica Sinica, 2013, 28(6):326-336.
    [17] BELIKOV SI, KONDRATOV IG, POTAPOVA UV, LEONOVA GN. The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties[J]. PLoS One, 2014, 9(4):e94946.
    [18] POTAPOVA UV, FERANCHUK SI, POTAPOV VV, KULAKOVA NV, KONDRATOV IG, LEONOVA GN, BELIKOV SI. NS2B/NS3 protease:allosteric effect of mutations associated with the pathogenicity of tick-borne encephalitis virus[J]. Journal of Biomolecular Structure and Dynamics, 2012, 30(6):638-651.
    [19] PIERSON TC, DIAMOND MS. The continued threat of emerging flaviviruses[J]. Nature Microbiology, 2020, 5(6):796-812.
    [20] PATICK AK, POTTS KE. Protease inhibitors as antiviral agents[J]. Clinical Microbiology Reviews, 1998, 11(4):614-627.
    [21] de LEUW P, STEPHAN C. Protease inhibitor therapy for hepatitis C virus-infection[J]. Expert Opinion on Pharmacotherapy, 2018, 19(6):577-587.
    [22] AKABERI D, BÅHLSTRÖM A, CHINTHAKINDI PK, NYMAN T, SANDSTRÖM A, JÄRHULT JD, PALANISAMY N, LUNDKVIST Å, LENNERSTRAND J. Targeting the NS2B-NS3 protease of tick-borne encephalitis virus with pan-flaviviral protease inhibitors[J]. Antiviral Research, 2021, 190:105074.
    [23] NOBLE CG, SEH CC, CHAO AT, SHI PY. Ligand-bound structures of the dengue virus protease reveal the active conformation[J]. Journal of Virology, 2012, 86(1):438-446.
    [24] BEHNAM MAM, GRAF D, BARTENSCHLAGER R, ZLOTOS DP, KLEIN CD. Discovery of nanomolar dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue[J]. Journal of Medicinal Chemistry, 2015, 58(23):9354-9370.
    [25] KUIPER BD, SLATER K, SPELLMON N, HOLCOMB J, MEDAPUREDDY P, MUZZARELLI KM, YANG Z, OVADIA R, AMBLARD F, KOVARI IA, SCHINAZI RF, KOVARI LC. Increased activity of unlinked Zika virus NS2B/NS3 protease compared to linked Zika virus protease[J]. Biochemical and Biophysical Research Communications, 2017, 492(4):668-673.
    [26] CIHLOVA B, HUSKOVA A, BÖSERLE J, NENCKA R, BOURA E, SILHAN J. High-throughput fluorescent assay for inhibitor screening of proteases from RNA viruses[J]. Molecules, 2021, 26(13):3792.
    [27] ALESHIN AE, SHIRYAEV SA, STRONGIN AY, LIDDINGTON RC. Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold[J]. Protein Science, 2007, 16(5):795-806.
    [28] ANG MJY, LIM HA, POULSEN A, WEE JLK, NG FM, JOY J, HILL J, CHIA CSB. Miniature bovine pancreatic trypsin inhibitors (m-BPTIs) of the West Nile virus NS2B-NS3 protease[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(sup2):194-200.
    [29] CHEN X, YANG KL, WU C, CHEN C, HU C, BUZOVETSKY O, WANG ZF, JI XY, XIONG Y, YANG HT. Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease[J]. Cell Research, 2016, 26(11):1260-1263.
    [30] 夏正保. 寨卡病毒NS2B-NS3的酶学研究[D]. 天津:天津大学硕士学位论文, 2017. XIA ZB. Enzymology research of the ZIKA virus NS2B-NS3[D]. Tianjin:Master's Thesis of Tianjin University, 2017 (in Chinese).
    [31] DAVIDSON RB, HENDRIX J, GEISS BJ, MCCULLAGH M. RNA-dependent structures of the RNA-binding loop in the Flavivirus NS3 helicase[J]. The Journal of Physical Chemistry B, 2020, 124(12):2371-2381.
    [32] LI KH, PHOO WW, LUO DH. Functional interplay among the flavivirus NS3 protease, helicase, and cofactors[J]. Virologica Sinica, 2014, 29(2):74-85.
    [33] CHEN C, HAN X, CHEN C, WANG FH, HUANG JH, ZHANG L, WANG ZF, YANG HT. Crystal structure of the NS3 helicase of tick-borne encephalitis virus[J]. Biochemical and Biophysical Research Communications, 2020, 528(3):601-606.
    [34] 韩旭. 蜱传脑炎病毒解旋酶的结构研究[D]. 天津:天津大学硕士学位论文, 2019. HAN X. Structural study of tick-borne encephalitis virus helicase[D]. Tianjin:Master's Thesis of Tianjin University, 2019 (in Chinese).
    [35] ANINDITA PD, HALBEISEN M, ŘEHA D, TUMA R, FRANTA Z. Mechanistic insight into the RNA-stimulated ATPase activity of tick-borne encephalitis virus helicase[J]. Journal of Biological Chemistry, 2022, 298(10):102383.
    [36] SALAM KA, AKIMITSU N. Hepatitis C virus NS3 inhibitors:current and future perspectives[J]. BioMed Research International, 2013:467869.
    [37] SINGH V, SOMVANSHI P. Structural Modeling of the NS 3 helicase of Tick-borne encephalitis virus and their virtual screening of potent drugs using molecular docking[J]. Interdisciplinary Sciences:Computational Life Sciences, 2009, 1(3):168-172.
    [38] MASTRANGELO E, PEZZULLO M, de BURGHGRAEVE T, KAPTEIN S, PASTORINO B, DALLMEIER K, de LAMBALLERIE X, NEYTS J, HANSON AM, FRICK DN, BOLOGNESI M, MILANI M. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity:new prospects for an old drug[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(8):1884-1894.
    [39] GARCÍA-ARIZA LL, ROCHA-ROA C, PADILLA-SANABRIA L, CASTAÑO-OSORIO JC. Virtual screening of drug-like compounds as potential inhibitors of the dengue virus NS5 protein[J]. Frontiers in Chemistry, 2022, 10:637266.
    [40] ZHENG ZF, YANG JY, JIANG X, LIU YL, ZHANG XW, LI M, ZHANG MD, FU M, HU K, WANG HZ, LUO MH, GONG P, HU QX. Tick-borne encephalitis virus nonstructural protein NS5 induces RANTES expression dependent on the RNA-dependent RNA polymerase activity[J]. The Journal of Immunology, 2018, 201(1):53-68.
    [41] JAVORSKY A, HUMBERT PO, KVANSAKUL M. Molecular basis of tick born encephalitis virus NS5 mediated subversion of apico-basal cell polarity signalling[J]. Biochemical Journal, 2022, 479(12):1303-1315.
    [42] RAMASWAMY K, RASHID M, RAMASAMY S, JAYAVELU T, VENKATARAMAN S. Revisiting viral RNA-dependent RNA polymerases:insights from recent structural studies[J]. Viruses, 2022, 14(10):2200.
    [43] STEPHENS R, LIM K, PORTELA M, KVANSAKUL M, HUMBERT PO, RICHARDSON HE. The scribble cell polarity module in the regulation of cell signaling in tissue development and tumorigenesis[J]. Journal of Molecular Biology, 2018, 430(19):3585-3612.
    [44] WERME K, WIGERIUS M, JOHANSSON M. Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling[J]. Cellular Microbiology, 2008, 10(3):696-712.
    [45] MELIK W, ELLENCRONA K, WIGERIUS M, HEDSTRÖM C, ELVÄNG A, JOHANSSON M. Two PDZ binding motifs within NS5 have roles in tick-borne encephalitis virus replication[J]. Virus Research, 2012, 169(1):54-62.
    [46] DONG HP, FINK K, ZÜST R, LIM SP, QIN CF, SHI PY. Flavivirus RNA methylation[J]. Journal of General Virology, 2014, 95(4):763-778.
    [47] YANG JY, JING XP, YI WF, LI XD, YAO C, ZHANG B, ZHENG ZH, WANG HZ, GONG P. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses[J]. Nucleic Acids Research, 2021, 49(3):1567-1580.
    [48] 黄星耀, 叶青, 李晓峰, 秦成峰. 寨卡病毒非结构蛋白NS5的结构与功能研究进展[J]. 科学通报, 2019, 64(26):2677-2688. HUANG XY, YE Q, LI XF, QIN CF. Advance in structure and functions of the nonstructural protein 5 of Zika virus[J]. Chinese Science Bulletin, 2019, 64(26):2677-2688 (in Chinese).
    [49] LASKOWSKI RA, SWINDELLS MB. LigPlot+:multiple ligand-protein interaction diagrams for drug discovery[J]. Journal of Chemical Information and Modeling, 2011, 51(10):2778-2786.
    [50] DONG HP, ZHANG B, SHI PY. Flavivirus methyltransferase:a novel antiviral target[J]. Antiviral Research, 2008, 80(1):1-10.
    [51] DONG HP, CHANG DC, XIE XP, TOH YX, CHUNG KY, ZOU G, LESCAR J, LIM SP, SHI PY. Biochemical and genetic characterization of dengue virus methyltransferase[J]. Virology, 2010, 405(2):568-578.
    [52] LIM SP, SONNTAG LS, NOBLE C, NILAR SH, NG RH, ZOU G, MONAGHAN P, CHUNG KY, DONG HP, LIU BP, BODENREIDER C, LEE G, DING M, CHAN WL, WANG G, JIAN YL, CHAO AT, LESCAR J, YIN Z, VEDANANDA TR, KELLER TH, SHI PY. Small molecule inhibitors that selectively block dengue virus methyltransferase[J]. Journal of Biological Chemistry, 2011, 286(8):6233-6240.
    [53] 薛建霞, 周光凤, 何严萍, 郑永唐. 基于NS5蛋白为靶点的登革病毒抑制剂研究进展[J]. 中国药物化学杂志, 2022, 32(9):726-734. XUE JX, ZHOU GF, HE YP, ZHENG YT. Research progress of dengue virus inhibitors targeting NS5 protein[J]. Chinese Journal of Medicinal Chemistry, 2022, 32(9):726-734 (in Chinese).
    [54] EYER L, ŠMÍDKOVÁ M, NENCKA R, NEČA J, KASTL T, PALUS M, de CLERCQ E, RŮŽEK D. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus[J]. Antiviral Research, 2016, 133:119-129.
    [55] EYER L, VALDÉS JJ, GIL VA, NENCKA R, HŘEBABECKÝ H, ŠÁLA M, SALÁT J, ČERNÝ J, PALUS M, de CLERCQ E, RŮŽEK D. Nucleoside inhibitors of tick-borne encephalitis virus[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(9):5483-5493.
    [56] LO MK, SHI PY, CHEN YL, FLINT M, SPIROPOULOU CF. In vitro antiviral activity of adenosine analog NITD008 against tick-borne flaviviruses[J]. Antiviral Research, 2016, 130:46-49.
    [57] EYER L, ZOUHAROVÁ D, ŠIRMAROVÁ J, FOJTÍKOVÁ M, ŠTEFÁNIK M, HAVIERNIK J, NENCKA R, de CLERCQ E, RŮŽEK D. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses[J]. Antiviral Research, 2017, 142:63-67.
    [58] EYER L, SVOBODA P, BALVAN J, VIČAR T, RAUDENSKÁ M, ŠTEFÁNIK M, HAVIERNIK J, HUVAROVÁ I, STRAKOVÁ P, RUDOLF I, HUBÁLEK Z, SELEY-RADTKE K, de CLERCQ E, RŮŽEK D. Broad-spectrum antiviral activity of 3'-deoxy-3'-fluoroadenosine against emerging flaviviruses[J]. Antimicrobial Agents and Chemotherapy, 2021, 65(2):e01522-20.
    [59] EYER L, KONDO H, ZOUHAROVA D, HIRANO M, VALDÉS JJ, MUTO M, KASTL T, KOBAYASHI S, HAVIERNIK J, IGARASHI M, KARIWA H, VACULOVICOVA M, CERNY J, KIZEK R, KRÖGER A, LIENENKLAUS S, DEJMEK M, NENCKA R, PALUS M, SALAT J, et al. Escape of tick-borne Flavivirus from 2'-C-methylated nucleoside antivirals is mediated by a single conservative mutation in NS5 that has a dramatic effect on viral fitness[J]. Journal of Virology, 2017, 91(21):e01028-17.
    [60] EYER L, NOUGAIREDE A, UHLIROVA M, DRIOUICH JS, ZOUHAROVA D, VALDES JJ, HAVIERNIK J, GOULD EA, DE CLERCQ E, DE LAMBALLERIE X, RUZEK D. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor Galidesivir (BCX4430) and also attenuates the virus for mice[J]. Journal of Virology, 2019, 93(16):e00367-19.
    [61] XING Y, SCHMITT HJ, ARGUEDAS A, YANG JF. Tick-borne encephalitis in China:a review of epidemiology and vaccines[J]. Vaccine, 2017, 35(9):1227-1237.
    [62] OSOLODKIN DI, KOZLOVSKAYA LI, DUEVA EV, DOTSENKO VV, ROGOVA YV, FROLOV KA, KRIVOKOLYSKO SG, ROMANOVA EG, MOROZOV AS, KARGANOVA GG, PALYULIN VA, PENTKOVSKI VM, ZEFIROV NS. Inhibitors of tick-borne Flavivirus reproduction from structure-based virtual screening[J]. ACS Medicinal Chemistry Letters, 2013, 4(9):869-874.
    [63] PERERA R, KHALIQ M, KUHN RJ. Closing the door on flaviviruses:entry as a target for antiviral drug design[J]. Antiviral Research, 2008, 80(1):11-22.
    [64] de BURGHGRAEVE T, KAPTEIN SJF, AYALA-NUNEZ NV, MONDOTTE JA, PASTORINO B, PRINTSEVSKAYA SS, de LAMBALLERIE X, JACOBS M, PREOBRAZHENSKAYA M, GAMARNIK AV, SMIT JM, NEYTS J. An analogue of the antibiotic teicoplanin prevents Flavivirus entry in vitro[J]. PLoS One, 2012, 7(5):e37244.
    [65] EYER L, SELEY-RADTKE K, RUZEK D. New directions in the experimental therapy of tick-borne encephalitis[J]. Antiviral Research, 2023, 210:105504.
    [66] SEDENKOVA KN, DUEVA EV, AVERINA EB, GRISHIN YK, OSOLODKIN DI, KOZLOVSKAYA LI, PALYULIN VA, SAVELYEV EN, ORLINSON BS, NOVAKOV IA, BUTOV GM, KUZNETSOVA TS, KARGANOVA GG, ZEFIROV NS. Synthesis and assessment of 4-aminotetrahydroquinazoline derivatives as tick-borne encephalitis virus reproduction inhibitors[J]. Organic & Biomolecular Chemistry, 2015, 13(11):3406-3415.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Feng, XIAO Yunjie, YANG Haitao, WANG Zefang. Research progress in non-structural proteins NS2B-NS3 and NS5 of tick-borne encephalitis virus. [J]. Acta Microbiologica Sinica, 2023, 63(9): 3441-3454

Copy
Share
Article Metrics
  • Abstract:165
  • PDF: 1023
  • HTML: 1494
  • Cited by: 0
History
  • Received:February 06,2023
  • Revised:May 04,2023
  • Online: August 29,2023
  • Published: September 04,2023
Article QR Code