The opgGH genes regulate 2,4-diacetylphloroglucinol production in Pseudomonas fluorescens 2P24
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) is essential for the biocontrol effect of Pseudomonas fluorescens 2P24. However, the genetic elements that modulates 2,4-DAPG production remains to be ascertained. [Methods] Previously, Tn5 transposon mutagenesis was employed to get P. fluorescens W3 with the complete loss of antagonism to Rhizoctonia solani, and the strain W3 was then used to screen out the novel gene that influencing the production of 2,4-DAPG. In this study, the effect of the mutated gene in W3 on the 2,4-DAPG production and biocontrol effect of 2P24 was explored. [Results] One of the insertion mutations, exhibiting no activity against R. solani, was mapped to opgG, which encodes the protein for the synthesis of osmoregulated periplasmic glucan (OPG). The deletion of opgGH impaired the production of 2,4-DAPG and bacterial swimming motility, while it did not affect the production of quorum sensing (QS) signals, the generation of hydrocyanic acid, or the biofilm formation. The transcriptional fusion assay indicated that the expression levels of rsmY, rsmX1, and gacA were not changed in the opgGH mutant compared with the wild type. The data suggested that opgGH regulated the production of 2,4-DAPG in a Gac/Rsm-independent manner. [Conclusion] The opgGH operon is essential for the regulation of 2,4-DAPG production, swimming mobility, and antifungal effect, serving as a key regulator for the biocontrol capacity of P. fluorescens 2P24.

    Reference
    [1] 魏海雷, 王烨, 张力群, 唐文华. 生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析[J]. 植物病理学报, 2004, 34(1):80-85. WEI HL, WANG Y, ZHANG LQ, TANG WH. Identification and characterization of biocontrol bacterial strain 2P24 and CPF-10[J]. Acta Phytopathologica Sinica, 2004, 34(1):80-85 (in Chinese).
    [2] 魏海雷, 周洪友, 张力群, 王烨, 唐文华. 抗生素2,4-二乙酰基间苯三酚作为荧光假单胞菌2P24菌株生防功能因子的实证分析[J]. 微生物学报, 2004, 44(5):663-666. WEI HL, ZHOU HY, ZHANG LQ, WANG Y, TANG WH. Experimental evidence on the functional agent of 2,4-diacetylphloroglucinol in biocontrol activity of Pseudomonas fluorescens 2P24[J]. Acta Microbiologica Sinica, 2004, 44(5):663-666 (in Chinese).
    [3] DONG QL, YAN Q, ZHANG B, ZHANG LQ, WU XG. Effect of the monothiol glutaredoxin GrxD on 2, 4-diacetylphloroglucinol biosynthesis and biocontrol activity of Pseudomonas fluorescens 2P24[J]. Frontiers in Microbiology, 2022, 13:920793.
    [4] LEVENFORS JJ, NORD C, BJERKETORP J, STÅHLBERG J, LARSSON R, GUSS B, ÖBERG B, BROBERG A. Antibacterial pyrrolidinyl and piperidinyl substituted 2,4-diacetylphloroglucinols from Pseudomonas protegens UP46[J]. The Journal of Antibiotics, 2020, 73(11):739-747.
    [5] 张燕, 张阳, 张博, 吴小刚, 张力群. 不同碳源对生防荧光假单胞菌2P24产抗生素2,4-二乙酰基间苯三酚的影响[J]. 微生物学报, 2018, 58(7):1202-1212. ZHANG Y, ZHANG Y, ZHANG B, WU XG, ZHANG LQ. Effect of carbon sources on production of 2,4-diacetylphoroglucinol in Pseudomonas fluorescens 2P24[J]. Acta Microbiologica Sinica, 2018, 58(7):1202-1212 (in Chinese).
    [6] de WERRA P, PÉCHY-TARR M, KEEL C, MAURHOFER M. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0[J]. Applied and Environmental Microbiology, 2009, 75(12):4162-4174.
    [7] ZHANG B, ZHAO H, WU XG, ZHANG LQ. The Oxidoreductase DsbA1 negatively influences 2,4-diacetylphloroglucinol biosynthesis by interfering the function of Gcd in Pseudomonas fluorescens 2P24[J]. BMC Microbiology, 2020, 20(1):39.
    [8] 周宇平, 吴小刚, 周洪友, 何月秋, 张力群. 荧光假单胞菌2P24中phlF基因对抗生素2,4-二乙酰基间苯三酚产生的影响[J]. 植物病理学报, 2010, 40(2):144-150. ZHOU YP, WU XG, ZHOU HY, HE YQ, ZHANG LQ. Effect of gene phlF on 2,4-diacetylphloroglucinol production in Pseudomonas fluorescens 2P24[J]. Acta Phytopathologica Sinica, 2010, 40(2):144-150 (in Chinese).
    [9] ZHANG NN, WU J, ZHANG SP, YUAN MR, XU H, LI J, ZHANG PP, WANG MZ, KEMPHER ML, TAO XY, ZHANG LQ, GE HH, HE YX. Molecular basis for coordinating secondary metabolite production by bacterial and plant signaling molecules[J]. The Journal of Biological Chemistry, 2022, 298(6):102027.
    [10] EVANS AF JR, WELLS MK, DENK J, MAZZA W, SANTOS R, DELPRINCE A, KIM W. Spatial structure formation by RsmE-regulated extracellular secretions in Pseudomonas fluorescens Pf0-1[J]. Journal of Bacteriology, 2022, 204(10):e0028522.
    [11] ZHANG Y, ZHANG B, WU X, ZHANG L. Characterization the role of GacA-dependent small RNAs and RsmA family proteins on 2,4-diacetylphloroglucinol production in Pseudomonas fluorescens 2P24[J]. Microbiological Research, 2020, 233:126391.
    [12] WEISSBORN AC, RUMLEY MK, KENNEDY EP. Isolation and characterization of Escherichia coli mutants blocked in production of membrane-derived oligosaccharides[J]. Journal of Bacteriology, 1992, 174(14):4856-4859.
    [13] BRIONES G, IÑÓN de IANNINO N, ROSET M, VIGLIOCCO A, PAULO PS, UGALDE RA. Brucella abortus cyclic beta-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells[J]. Infection and Immunity, 2001, 69(7):4528-4535.
    [14] MENG J, XU JG, CHEN JY. The role of osmoregulated periplasmic glucans in the biofilm antibiotic resistance of Yersinia enterocolitica[J]. Microbial Pathogenesis, 2020, 147:104284.
    [15] SHANAHAN P, O'SULLIVAN DJ, SIMPSON P, GLENNON JD, O'GARA F. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production[J]. Applied and Environmental Microbiology, 1992, 58(1):353-358.
    [16] GHAFOOR A, JORDENS Z, REHM BHA. Role of PelF in pel polysaccharide biosynthesis in Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2013, 79(9):2968-2978.
    [17] REIMMANN C, VALVERDE C, KAY E, HAAS D. Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0[J]. Journal of Bacteriology, 2005, 187(1):276-285.
    [18] LEQUETTE Y, ROLLET E, DELANGLE A, GREENBERG EP, BOHIN JP. Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa[J]. Microbiology (Reading, England), 2007, 153(Pt 10):3255-3263.
    [19] BHAGWAT AA, JUN W, LIU L, KANNAN P, DHARNE M, PHEH B, TALL BD, KOTHARY MH, GROSS KC, ANGLE S, MENG JH, SMITH A. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice[J]. Microbiology (Reading, England), 2009, 155(Pt 1):229-237.
    [20] BONTEMPS-GALLO S, MADEC E, DONDEYNE J, DELRUE B, ROBBE-MASSELOT C, VIDAL O, PROUVOST AF, BOUSSEMART G, BOHIN JP, LACROIX JM. Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii[J]. Environmental Microbiology, 2013, 15(3):881-894.
    [21] LI SY, LIANG H, WEI ZY, BAI HN, LI MY, LI QQ, QU M, SHEN XH, WANG Y, ZHANG L. An osmoregulatory mechanism operating through OmpR and LrhA controls the motile-sessile switch in the plant growth-promoting bacterium Pantoea alhagi[J]. Applied and Environmental Microbiology, 2019, 85(10):e00077-e00019.
    [22] YAN Q. WU X, WEI HL, WANG H, ZHANG L. Differential control of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by sigma factor RpoS and the GacS/GacA two-component regulatory system[J]. Microbiological Research, 2009, 164(1):18-26.
    [23] WU XG, ZENG Q, KOESTLER BJ, WATERS CM, SUNDIN GW, HUTCHINS W, YANG CH. Deciphering the components that coordinately regulate virulence factors of the soft rot pathogen Dickeya dadantii[J]. Molecular Plant-Microbe Interactions:MPMI, 2014, 27(10):1119-1131.
    [24] GIRGIS HS, LIU Y, RYU WS, TAVAZOIE S. A comprehensive genetic characterization of bacterial motility[J]. PLoS Genetics, 2007, 3(9):1644-1660.
    [25] MURAKAMI K, NASU H, FUJIWARA T, TAKATSU N, YOSHIDA N, FURUTA K, KAITO C. The absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli[J]. Journal of Bacteriology, 2021, 203(12):e0051520.
    [26] MADEC E, BONTEMPS-GALLO S, LACROIX JM. Increased phosphorylation of the RcsB regulator of the RcsCDB phosphorelay in strains of Dickeya dadantii devoid of osmoregulated periplasmic glucans revealed by Phos-tag gel analysis[J]. Microbiology (Reading, England), 2014, 160(Pt 12):2763-2770.
    [27] MENG J, YOUNG G, CHEN JY. The rcs system in Enterobacteriaceae:envelope stress responses and virulence regulation[J]. Frontiers in Microbiology, 2021, 12:627104.
    [28] MATILLA MA, MARTÍN-MORA D, GAVIRA JA, KRELL T. Pseudomonas aeruginosaas a model to study chemosensory pathway signaling[J]. Microbiology and Molecular Biology Reviews, 2021, 85(1):e00151-20.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

QIN Fanqi, YANG Qingqing, LI Changhong, LUO Yongjie, ZHANG Liqun, WU Xiaogang. The opgGH genes regulate 2,4-diacetylphloroglucinol production in Pseudomonas fluorescens 2P24. [J]. Acta Microbiologica Sinica, 2023, 63(9): 3591-3601

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 08,2023
  • Revised:March 15,2023
  • Online: August 29,2023
  • Published: September 04,2023
Article QR Code