A CRISPR/Cas13a-based detection method for the drug resistance gene mecA of Staphylococcus aureus
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] To address the problem that the detection of drug resistance gene usually relies on specialized devices and the lack of rapid detection methods, we aimed to establish a rapid detection method for the drug resistance gene mecA of Staphylococcus aureus based on clustered regularly interspaced short palindromic repeats (CRISPR). [Methods] Firstly, we designed and screened the recombinase-aided amplification (RAA) primers and CRISPR RNA (crRNA) with high sensitivity according to the conserved region of mecA. Then, we established the detection method for mecA with the easy-readout and sensitive enhanced (ERASE) strip. Finally, we used simulated samples and clinical isolated samples to compare the established method with the traditional method. [Results] A set of efficient RAA primers and crRNAs targeting mecA were successfully screened out, and a highly sensitive CRISPR-ERASE-based nucleic acid detection method was established for mecA. This method can detect mecA at a minimum concentration of 10 copies/μL. Among 32 clinical isolates of S. aureus, 24 strains were tested positive for mecA by the established method, which was in 100% agreement with the results of antimicrobial susceptibility test and quantitative real-time PCR (qPCR). [Conclusion] A CRISPR-ERASE-based simple and sensitive method for detecting the drug resistance gene mecA was established.

    Reference
    [1] BA XL, HARRISON EM, EDWARDS GF, HOLDEN MTG, LARSEN AR, PETERSEN A, SKOV RL, PEACOCK SJ, PARKHILL J, PATERSON GK, HOLMES MA. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene[J]. The Journal of Antimicrobial Chemotherapy, 2014, 69(3):594-597.
    [2] PEACOCK SJ, PATERSON GK. Mechanisms of methicillin resistance in Staphylococcus aureus[J]. Annual Review of Biochemistry, 2015, 84:577-601.
    [3] VESTERGAARD M, FREES D, INGMER H. Antibiotic resistance and the MRSA problem[J]. Microbiology Spectrum, 2019, 7(2). DOI:10.1128/microbiolspec.GPP3-0057-2018.
    [4] SABATH LD, FINLAND M. Inactivation of methicillin, oxacillin and ancillin by Staphylococcus aureus[J]. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY), 1962, 111:547-550.
    [5] BARTELS MD, WORNING P, ANDERSEN LP, BES M, ENGER H, ÅS CG, HANSEN TA, HOLZKNECHT BJ, LARSSEN KW, LAURENT F, MÄKITALO B, PICHON B, SVARTSTRÖM O, WESTH H. Repeated introduction and spread of the MRSA clone t304/ST6 in northern Europe[J]. Clinical Microbiology and Infection:the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2021, 27(2):284.e1-284.e5.
    [6] ZIMMERMAN CE, STAMPER PD, BRYANT L, FARLEY J, GOLOVA J, HOLMBERG R, HOWARD T, LINGER Y, MEYERS K, PEROV A, RUDY GB, CARROLL KC, CHANDLER DP. Development of a simple, low-density array to detect methicillin-resistant Staphylococcus aureus and mecA dropouts in nasal swabs[J]. Journal of Microbiological Methods, 2012, 91(3):366-376.
    [7] CHEN JS, MA EB, HARRINGTON LB, Da COSTA M, TIAN XR, PALEFSKY JM, DOUDNA JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387):436-439.
    [8] HARRINGTON LB, BURSTEIN D, CHEN JS, PAEZ-ESPINO D, MA EB, WITTE IP, COFSKY JC, KYRPIDES NC, BANFIELD JF, DOUDNA JA. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842.
    [9] GOOTENBERG JS, ABUDAYYEH OO, LEE JW, ESSLETZBICHLER P, DY AJ, JOUNG J, VERDINE V, DONGHIA N, DARINGER NM, FREIJE CA, MYHRVOLD C, BHATTACHARYYA RP, LIVNY J, REGEV A, KOONIN EV, HUNG DT, SABETI PC, COLLINS JJ, ZHANG F. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
    [10] CUNNINGHAM CH, HENNELLY CM, LIN JT, UBALEE R, BOYCE RM, MULOGO EM, HATHAWAY N, THWAI KL, PHANZU F, KALONJI A, MWANDAGALIRWA K, TSHEFU A, JULIANO JJ, PARR JB. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping[J]. EBioMedicine, 2021, 68:103415.
    [11] LUO H, CHEN WT, MAI ZD, YANG JJ, LIN XM, ZENG LH, PAN YY, XIE QH, XU QQ, LI XX, LIAO YW, FENG ZQ, OU JL, QIN XL, ZHENG HP. Development and application of Cas13a-based diagnostic assay for Neisseria gonorrhoeae detection and azithromycin resistance identification[J]. The Journal of Antimicrobial Chemotherapy, 2022, 77(3):656-664.
    [12] JOUNG J, LADHA A, SAITO M, SEGEL M, BRUNEAU R, HUANG ML W, KIM NG, YU X, LI J, WALKER BD, GRENINGER AL, JEROME KR, GOOTENBERG JS, ABUDAYYEH OO, ZHANG F. Point-of-care testing for COVID-19 using SHERLOCK diagnostics[J]. MedRxiv:the Preprint Server for Health Sciences, 2020. DOI:10.1101/2020.05.04.20091231.
    [13] 王珊. 基于CRISPR技术的乙肝病毒DNA及YMDD耐药突变高灵敏检测技术研究[D]. 北京:军事科学院博士学位论文, 2019. WANG S. Highly sensitive detection for HBV DNA and YMDD drug resistance mutation based on CRISPR[D]. Beijing:Doctoral Dissertation of Academy of Military Sciences, 2019 (in Chinese).
    [14] 王彦贺, 董雪, 杨明娟, 李浩, 孙岩松. 基于CRISPR的埃博拉病毒核酸检测方法的建立[J]. 中国病原生物学杂志, 2021, 16(2):125-130. WANG YH, DONG X, YANG MJ, LI H, SUN YS. Development of a method for CRISPR-based nucleic acid detection of the Ebola virus[J]. Journal of Pathogen Biology, 2021, 16(2):125-130 (in Chinese).
    [15] LI H, DONG X, WANG YH, YANG L, CAI K, ZHANG XL, KOU ZH, HE L, SUN SH, LI TY, NIE Y, LI XF, SUN YS. Sensitive and easy-read CRISPR strip for COVID-19 rapid point-of-care testing[J]. The CRISPR Journal, 2021, 4(3):392-399.
    [16] YANG MJ, KE YH, WANG XS, REN H, LIU W, LU HJ, ZHANG WY, LIU SW, CHANG GH, TIAN SG, WANG LH, HUANG LY, LIU C, YANG RF, CHEN ZL. Development and evaluation of a rapid and sensitive EBOV-RPA test for rapid diagnosis of Ebola virus disease[J]. Scientific Reports, 2016, 6:26943.
    [17] LI H, WANG S, DONG X, LI Q, LI M, LI JF, GUO Y, JIN X, ZHOU YS, SONG HB, KOU ZH. CRISPR-Cas13a cleavage of dengue virus NS3 gene efficiently inhibits viral replication[J]. Molecular Therapy Nucleic Acids, 2020, 19:1460-1469.
    [18] SHINODA H, IIDA T, MAKINO A, YOSHIMURA M, ISHIKAWA J, ANDO J, MURAI K, SUGIYAMA K, MURAMOTO Y, NAKANO M, KIGA K, CUI LZ, NUREKI O, TAKEUCHI H, NODA T, NISHIMASU H, WATANABE R. Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis[J]. Communications Biology, 2022, 5(1):473.
    [19] TURNER NA, SHARMA-KUINKEL BK, MASKARINEC SA, EICHENBERGER EM, SHAH PP, CARUGATI M, HOLLAND TL, FOWLER VG Jr. Methicillin-resistant Staphylococcus aureus:an overview of basic and clinical research[J]. Nature Reviews Microbiology, 2019, 17(4):203-218.
    [20] HEILBRONNER S, FOSTER TJ. Staphylococcus lugdunensis:a skin commensal with invasive pathogenic potential[J]. Clinical Microbiology Reviews, 2020, 34(2):e00205-e00220.
    [21] FRANK KL, del POZO JL, PATEL R. From clinical microbiology to infection pathogenesis:how daring to be different works for Staphylococcus lugdunensis[J]. Clinical Microbiology Reviews, 2008, 21(1):111-133.
    [22] ANTIMICROBIAL RESISTANCE COLLABORATORS. Global burden of bacterial antimicrobial resistance in 2019:a systematic analysis[J]. The Lancet, 2022, 399(10325):629-655.
    [23] HUMPHRIES R, BOBENCHIK AM, HINDLER JA, SCHUETZ AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st edition[J]. Journal of Clinical Microbiology, 2021, 59(12):e0021321.
    [24] 金姝, 邹玉涵, 闫佩毅, 朱卿, 张骥. qPCR快速检测痰标本中MRSA的临床应用[J]. 国际检验医学杂志, 2017, 38(24):3441-3443. JIN S, ZOU YH, YAN PY, ZHU Q, ZHANG J. Clinical application of qPCR in rapid detection of MRSA in sputum samples[J]. International Journal of Laboratory Medicine, 2017, 38(24):3441-3443 (in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

HU Qiang, LI Hao, HU Xiaofeng, HAN Yao, SUN Yansong, LIU Yan. A CRISPR/Cas13a-based detection method for the drug resistance gene mecA of Staphylococcus aureus. [J]. Acta Microbiologica Sinica, 2023, 63(9): 3628-3640

Copy
Share
Article Metrics
  • Abstract:404
  • PDF: 1600
  • HTML: 1408
  • Cited by: 0
History
  • Received:January 14,2023
  • Revised:March 27,2023
  • Online: August 29,2023
  • Published: September 04,2023
Article QR Code