Genetically engineered bacteria: construction, performance evaluation, and applications in disease diagnosis and treatment
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [69]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    With the in-depth study of the relationship between intestinal microbiome and host and the rapid development of genetic engineering, the application of genetically engineered bacteria (GEB) in the medical field has become a research hotspot. GEB refer to the bacteria that have been genetically engineered to efficiently express exogenous proteins or compounds to achieve specific goals. Compared with traditional drugs, GEB have a variety of advantages. The construction process of GEB includes the selection of chassis, the acquisition of functional genes, and gene transfer and recombination. At present, the bacteria serving as GEB chassis can be classified into two categories:generally regarded as safe (GRAS) strains and commensal strains. The application of multi-omics facilitates the selection of chassis. Functional genes can be obtained by PCR, DNA synthesis, CRISPR-Cas9 or Red/ET recombination system according to their sizes. Heat shock and electroporation are widely used for plasmid transfer in bacteria. Homologous recombination can directly integrate the target gene into the host's chromosome. The encapsulation technology can improve GEB's survival rate and colonization ability, and synthetic gene circuits can make GEB intelligent. Functional stability, effectiveness, and safety are the general indicators for evaluating GEB. The instability of plasmid is an inherent defect of the GEB constructed by plasmid-mediated gene transfer, while the GEB constructed by gene integration have strong stability. In addition, to achieve long-term stable expression of functional genes, researchers need to evaluate and alleviate the impact of load. The efficacy and safety of GEB need to be evaluated in vitro, in animal models and clinical trials. There are some methods that have successfully achieved optimization of the above indicators. GEB have been widely used in the diagnosis and treatment of inflammatory diseases, tumors, metabolic diseases, infectious diseases, neurological diseases, and other diseases, playing a unique role. However, there are still problems regarding construction methods, performance evaluation and optimization, and large-scale production, which limit the clinical application. In this paper, we introduced the methods for construction and performance evaluation of GEB, summarized the application in disease diagnosis and treatment in recent years, pointed out the existing problems, and prospected the development of this field in the future.

    Reference
    [1] LIU YT, FENG J, PAN HC, ZHANG XW, ZHANG YL. Genetically engineered bacterium:principles, practices, and prospects[J]. Frontiers in Microbiology, 2022, 13:997587.
    [2] O'TOOLE PW, MARCHESI JR, HILL C. Next-generation probiotics:the spectrum from probiotics to live biotherapeutics[J]. Nature Microbiology, 2017, 2:17057.
    [3] HEAVEY MK, DURMUSOGLU D, CROOK N, ANSELMO AC. Discovery and delivery strategies for engineered live biotherapeutic products[J]. Trends in Biotechnology, 2022, 40(3):354-369.
    [4] CANI PD, DEPOMMIER C, DERRIEN M, EVERARD A, de VOS WM. Akkermansia muciniphila:paradigm for next-generation beneficial microorganisms[J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19(10):625-637.
    [5] FAHNØE U, BUKH J. Full-length open reading frame amplification of hepatitis C virus[M]//Methods in Molecular Biology. New York, NY:Springer New York, 2018:85-91.
    [6] JIANG WJ, ZHAO XJ, GABRIELI T, LOU CB, EBENSTEIN Y, ZHU TF. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters[J]. Nature Communications, 2015, 6:8101.
    [7] MUKAI T, YONEJI T, YAMADA K, FUJITA H, NARA S, SU'ETSUGU M. Overcoming the challenges of megabase-sized plasmid construction in Escherichia coli[J]. ACS Synthetic Biology, 2020, 9(6):1315-1327.
    [8] JIANG ZW, LI MT, MCCLEMENTS DJ, LIU XB, LIU FG. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation[J]. Food Hydrocolloids, 2022, 125:107438.
    [9] YAO MF, LI B, YE HW, HUANG WH, LUO QX, XIAO H, MCCLEMENTS DJ, LI LJ. Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles[J]. Food Hydrocolloids, 2018, 83:246-252.
    [10] RIGLAR DT, SILVER PA. Engineering bacteria for diagnostic and therapeutic applications[J]. Nature Reviews Microbiology, 2018, 16(4):214-225.
    [11] CUBILLOS-RUIZ A, GUO TX, SOKOLOVSKA A, MILLER PF, COLLINS JJ, LU TK, LORA JM. Engineering living therapeutics with synthetic biology[J]. Nature Reviews Drug Discovery, 2021, 20(12):941-960.
    [12] VERCH T, PAN ZK, PATERSON Y. Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines[J]. Infection and Immunity, 2004, 72(11):6418-6425.
    [13] DANINO T, PRINDLE A, KWONG GA, SKALAK M, LI H, ALLEN K, HASTY J, BHATIA SN. Programmable probiotics for detection of cancer in urine[J]. Science Translational Medicine, 2015, 7(289):289ra84.
    [14] GOROCHOWSKI TE, AVCILAR-KUCUKGOZE I, BOVENBERG RAL, ROUBOS JA, IGNATOVA Z. A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes[J]. ACS Synthetic Biology, 2016, 5(7):710-720.
    [15] CERONI F, ALGAR R, STAN GB, ELLIS T. Quantifying cellular capacity identifies gene expression designs with reduced burden[J]. Nature Methods, 2015, 12(5):415-418.
    [16] SEGALL-SHAPIRO TH, MEYER AJ, ELLINGTON AD, SONTAG ED, VOIGT CA. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase[J]. Molecular Systems Biology, 2014, 10(7):742.
    [17] PASINI M, FERNÁNDEZ-CASTANÉ A, JARAMILLO A, de MAS C, CAMINAL G, FERRER P. Using promoter libraries to reduce metabolic burden due to plasmid-encoded proteins in recombinant Escherichia coli[J]. New Biotechnology, 2016, 33(1):78-90.
    [18] de BOEVER P, DEPLANCKE B, VERSTRAETE W. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder[J]. The Journal of Nutrition, 2000, 130(10):2599-2606.
    [19] RIGLAR DT, GIESSEN TW, BAYM M, KERNS SJ, NIEDERHUBER MJ, BRONSON RT, KOTULA JW, GERBER GK, WAY JC, SILVER PA. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation[J]. Nature Biotechnology, 2017, 35(7):653-658.
    [20] KIM HJ, INGBER DE. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation[J]. Integrative Biology, 2013, 5(9):1130-1140.
    [21] YISSACHAR N, ZHOU Y, UNG L, LAI NY, MOHAN JF, EHRLICHER A, WEITZ DA, KASPER DL, CHIU IM, MATHIS D, BENOIST C. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk[J]. Cell, 2017, 168(6):1135-1148.e12.
    [22] KAPLAN GG. The global burden of IBD:from 2015 to 2025[J]. Nature Reviews Gastroenterology & Hepatology, 2015, 12(12):720-727.
    [23] NG SC. Emerging trends of inflammatory bowel disease in Asia[J]. Gastroenterology & Hepatology, 2016, 12(3):193-196.
    [24] CHEN Y. Perspectives of IBD China:is crohn's and colitis foundation model a solution to health care issues for the country?[J]. Inflammatory Bowel Diseases, 2018, 24(5):925-929.
    [25] KOBAYASHI T, SIEGMUND B, LE BERRE C, WEI SC, FERRANTE M, SHEN B, BERNSTEIN CN, DANESE S, PEYRIN-BIROULET L, HIBI T. Ulcerative colitis[J]. Nature Reviews Disease Primers, 2020, 6(1):74.
    [26] ZOU ZP, DU Y, FANG TT, ZHOU Y, YE BC. Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice[J]. Cell Host & Microbe, 2023, 31(2):199-212.e5.
    [27] KASER A, ZEISSIG S, BLUMBERG RS. Inflammatory bowel disease[J]. Annual Review of Immunology, 2010, 28:573-621.
    [28] STEIDLER L, HANS W, SCHOTTE L, NEIRYNCK S, OBERMEIER F, FALK W, FIERS W, REMAUT E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10[J]. Science, 2000, 289(5483):1352-1355.
    [29] PRAVESCHOTINUNT P, DURAJ-THATTE AM, GELFAT I, BAHL F, CHOU DB, JOSHI NS. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut[J]. Nature Communications, 2019, 10:5580.
    [30] HWANG J, JIN J, JEON S, MOON SH, PARK MY, YUM DY, KIM JH, KANG JE, PARK MH, KIM EJ, PAN JG, KWON O, OH GT. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis[J]. Redox Biology, 2020, 37:101760.
    [31] WAN Y, YANG L, JIANG S, QIAN DW, DUAN JN. Excessive apoptosis in ulcerative colitis:crosstalk between apoptosis, ROS, ER stress, and intestinal homeostasis[J]. Inflammatory Bowel Diseases, 2022, 28(4):639-648.
    [32] ZHOU J, LI MY, CHEN QF, LI XJ, CHEN LF, DONG ZL, ZHU WJ, YANG Y, LIU Z, CHEN Q. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nature Communications, 2022, 13(1):3432.
    [33] LEVENTHAL DS, SOKOLOVSKA A, LI N, PLESCIA C, KOLODZIEJ SA, GALLANT CW, CHRISTMAS R, GAO JR, JAMES MJ, ABIN-FUENTES A, MOMIN M, BERGERON C, FISHER A, MILLER PF, WEST KA, LORA JM. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity[J]. Nature Communications, 2020, 11(1):2739.
    [34] FAN JX, NIU MT, QIN YT, SUN YX, ZHANG XZ. Progress of engineered bacteria for tumor therapy[J]. Advanced Drug Delivery Reviews, 2022, 185:114296.
    [35] GURBATRI CR, ARPAIA N, DANINO T. Engineering bacteria as interactive cancer therapies[J]. Science, 2022, 378(6622):858-864.
    [36] CANALE FP, BASSO C, ANTONINI G, PEROTTI M, LI N, SOKOLOVSKA A, NEUMANN J, JAMES MJ, GEIGER S, JIN WJ, THEURILLAT JP, WEST KA, LEVENTHAL DS, LORA JM, SALLUSTO F, GEIGER R. Metabolic modulation of tumours with engineered bacteria for immunotherapy[J]. Nature, 2021, 598(7882):662-666.
    [37] COURBET A, ENDY D, RENARD E, MOLINA F, BONNET J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates[J]. Science Translational Medicine, 2015, 7(289):289ra83.
    [38] DUAN FF, LIU JH, MARCH JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes[J]. Diabetes, 2015, 64(5):1794-1803.
    [39] TAKIISHI T, COOK DP, KORF H, SEBASTIANI G, MANCARELLA F, JOÃO PAULO MONTEIRO CARVALHO MORI CUNHA, WASSERFALL C, CASARES N, LASARTE JJ, STEIDLER L, ROTTIERS P, DOTTA F, GYSEMANS C, MATHIEU C. Reversal of diabetes in NOD mice by clinical-grade proinsulin and IL-10-secreting Lactococcus lactisin combination with low-dose anti-CD3 depends on the induction of Foxp3-positive T cells[J]. Diabetes, 2017, 66(2):448-459.
    [40] de GROOT MJ, HOEKSMA M, BLAU N, REIJNGOUD DJ, van SPRONSEN FJ. Pathogenesis of cognitive dysfunction in phenylketonuria:review of hypotheses[J]. Molecular Genetics and Metabolism, 2010, 99(suppl 1):S86-S89.
    [41] ISABELLA VM, HA BN, CASTILLO MJ, LUBKOWICZ DJ, ROWE SE, MILLET YA, ANDERSON CL, LI N, FISHER AB, WEST KA, REEDER PJ, MOMIN MM, BERGERON CG, GUILMAIN SE, MILLER PF, KURTZ CB, FALB D. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[J]. Nature Biotechnology, 2018, 36(9):857-864.
    [42] PUURUNEN MK, VOCKLEY J, SEARLE SL, SACHAROW SJ, PHILLIPS JA, DENNEY WS, GOODLETT BD, WAGNER DA, BLANKSTEIN L, CASTILLO MJ, CHARBONNEAU MR, ISABELLA VM, SETHURAMAN VV, RIESE RJ, KURTZ CB, BRENNAN AM. Safety and pharmacodynamics of an engineered E.coli Nissle for the treatment of phenylketonuria:a first-in-human phase 1/2a study[J]. Nature Metabolism, 2021, 3(8):1125-1132.
    [43] ALDRIDGE DR, TRANAH EJ, SHAWCROSS DL. Pathogenesis of hepatic encephalopathy:role of ammonia and systemic inflammation[J]. Journal of Clinical and Experimental Hepatology, 2015, 5(suppl 1):S7-S20.
    [44] LEONARD JV, MORRIS AAM. Urea cycle disorders[J]. Seminars in Neonatology:SN, 2002, 7(1):27-35.
    [45] KURTZ CB, MILLET YA, PUURUNEN MK, PERREAULT M, CHARBONNEAU MR, ISABELLA VM, KOTULA JW, ANTIPOV E, DAGON Y, DENNEY WS, WAGNER DA, WEST KA, DEGAR AJ, BRENNAN AM, MILLER PF. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans[J]. Science Translational Medicine, 2019, 11(475):eaau7975.
    [46] WANG LF, CHEN TT, WANG H, WU XL, CAO Q, WEN K, DENG KY, XIN HB. Engineered bacteria of MG1363-pMG36e-GLP-1 attenuated obesity-induced by high fat diet in mice[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11:595575.
    [47] BAI L, GAO MX, CHENG XM, KANG GB, CAO XC, HUANG H. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice[J]. Microbial Cell Factories, 2020, 19(1):1-13.
    [48] MAO N, CUBILLOS-RUIZ A, CAMERON DE, COLLINS JJ. Probiotic strains detect and suppress cholera in mice[J]. Science Translational Medicine, 2018, 10(445):eaao2586.
    [49] JAYARAMAN P, HOLOWKO MB, YEOH JW, LIM S, POH CL. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae[J]. ACS Synthetic Biology, 2017, 6(7):1403-1415.
    [50] HWANG IY, KOH E, WONG A, MARCH JC, BENTLEY WE, LEE YS, CHANG MW. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models[J]. Nature Communications, 2017, 8:15028.
    [51] CHEN TT, TIAN PY, HUANG ZX, ZHAO XX, WANG H, XIA CF, WANG L, WEI H. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1[J]. Applied Microbiology and Biotechnology, 2018, 102(17):7565-7575.
    [52] FANG X, ZHOU XT, MIAO YQ, HAN YW, WEI J, CHEN TT. Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer's disease and Parkinson's disease[J]. AMB Express, 2020, 10(1):1-13.
    [53] YUE MY, WEI J, CHEN WJ, HONG DJ, CHEN TT, FANG X. Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on parkinson's disease via inhibiting ferroptosis[J]. Nutrients, 2022, 14(22):4886.
    [54] WU H, WEI J, ZHAO XM, LIU Y, CHEN ZH, WEI KH, LU JC, CHEN WJ, JIANG MX, LI SJ, CHEN TT. Neuroprotective effects of an engineered Escherichia coli Nissle 1917 on Parkinson's disease in mice by delivering GLP-1 and modulating gut microbiota[J]. Bioengineering & Translational Medicine, 2022:e10351.
    [55] PAN HZ, SUN T, CUI MH, MA N, YANG C, LIU J, PANG GJ, LIU BN, LI LY, ZHANG XY, ZHANG WW, CHANG J, WANG HJ. Light-sensitive Lactococcus lactis for microbe-gut-brain axis regulating via upconversion optogenetic micro-nano system[J]. ACS Nano, 2022, 16(4):6049-6063.
    [56] NEEDHAM BD, MAZMANIAN SK, SHARON G, FUNABASHI M, FISCHBACH MA, HSIAO EY, PATTERSON PH. Composition or product combination for ameliorating a symptom associated with anxiety and/or autism spectrum disorder, comprises a genetically engineered Bacteroides ovatus and Lactobacillus plantarum. WO2018152133-A1; KR2019122710-A; US2019374588-A1; EP3582795-A1; JP2020507627-W; EP3582795-A4; US11224624-B2; US2022096575-A1[P/OL]. 2018-08-23.
    [57] LIN YH, SUN XX, YUAN QP, YAN YJ. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan[J]. ACS Synthetic Biology, 2014, 3(7):497-505.
    [58] 刘畅, 殷华, 庄以彬, 刘涛. 缬草-4,7(11)-二烯在大肠杆菌中的生物合成[J]. 生物技术通报, 2017, 33(1):129-134. LIU C, YIN H, ZHUANG YB, LIU T. Biosynthesis of valerena-4,7(11)-diene in an engineered Escherichia coli strain[J]. Biotechnology Bulletin, 2017, 33(1):129-134(in Chinese).
    [59] SOMMER MOA, BONGERS M, WANG HH, CUSIMANO F. Composition for use as a medicament for treatment of depression, dementia, cancer and sleep disorder, comprises cells of a recombinant microorganism, and where microorganism comprises one or more recombinant nucleic acid molecules. WO2020249784-A1; AU2020293577-A1; CA3142999-A1; EP3983534-A1; CN114450392-A; JP2022535958-W[P/OL]. 2020-12-17.
    [60] ZHU F, GUO RJ, WANG W, JU YM, WANG Q, MA QY, SUN Q, FAN YJ, XIE YY, YANG Z, JIE ZY, ZHAO BB, XIAO L, YANG L, ZHANG T, LIU B, GUO LY, HE XY, CHEN YC, CHEN C, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice[J]. Molecular Psychiatry, 2020, 25(11):2905-2918.
    [61] ZHU F, JU YM, WANG W, WANG Q, GUO RJ, MA QY, SUN Q, FAN YJ, XIE YY, YANG Z, JIE ZY, ZHAO BB, XIAO L, YANG L, ZHANG T, FENG JQ, GUO LY, HE XY, CHEN YC, CHEN C, et al. Metagenome-wide association of gut microbiome features for schizophrenia[J]. Nature Communications, 2020, 11(1):1612.
    [62] MIMEE M, NADEAU P, HAYWARD A, CARIM S, FLANAGAN S, JERGER L, COLLINS J, McDONNELL S, SWARTWOUT R, CITORIK RJ, BULOVIĆ V, LANGER R, TRAVERSO G, CHANDRAKASAN AP, LU TK. An ingestible bacterial-electronic system to monitor gastrointestinal health[J]. Science, 2018, 360(6391):915-918.
    [63] YANG GL, JIANG YL, YANG WT, DU F, YAO YB, SHI CW, WANG CF. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide[J]. Microbial Cell Factories, 2015, 14(1):202.
    [64] CAMACHO DM, COLLINS KM, POWERS RK, COSTELLO JC, COLLINS JJ. Next-generation machine learning for biological networks[J]. Cell, 2018, 173(7):1581-1592.
    [65] WOYKE T, DOUD DFR, SCHULZ F. The trajectory of microbial single-cell sequencing[J]. Nature Methods, 2017, 14(11):1045-1054.
    [66] TROPINI C, EARLE KA, HUANG KC, SONNENBURG JL. The gut microbiome:connecting spatial organization to function[J]. Cell Host & Microbe, 2017, 21(4):433-442.
    [67] CLAIRMONT C, LEE KC, PIKE J, ITTENSOHN M, LOW KB, PAWELEK J, BERMUDES D, BRECHER SM, MARGITICH D, TURNIER J, LI Z, LUO X, KING I, ZHENG LM. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimuvium[J]. The Journal of Infectious Diseases, 2000, 181(6):1996-2002.
    [68] VARGASON AM, SANTHOSH S, ANSELMO AC. Surface modifications for improved delivery and function of therapeutic bacteria[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(25):e2001705.
    [69] KIM SM, DEFAZIO JR, HYOJU SK, SANGANI K, KESKEY R, KREZALEK MA, KHODAREV NN, SANGWAN N, CHRISTLEY S, HARRIS KG, MALIK A, ZABORIN A, BOUZIAT R, RANOA DR, WIEGERINCK M, ERNEST JD, SHAKHSHEER BA, FLEMING ID, WEICHSELBAUM RR, ANTONOPOULOS DA, et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity[J]. Nature Communications, 2020, 11(1):2354.
    Related
    Cited by
Get Citation

LU Wen, LIU Ruina, LEI Pu, MA Xiancang, ZHU Feng. Genetically engineered bacteria: construction, performance evaluation, and applications in disease diagnosis and treatment. [J]. Acta Microbiologica Sinica, 2023, 63(10): 3758-3772

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 14,2023
  • Revised:June 19,2023
  • Online: October 09,2023
  • Published: October 04,2023
Article QR Code