A Candida albicans strain expressing GFP/mCherry: construction and application in the research on macrophage- C.albicans interaction
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The phagocytosis rate of macrophages and the morphological changes of Candida albicans are the key points in the research on the host-pathogen interaction. [Objective] To construct C. albicans strains expressing the green fluorescent protein (GFP) or mCherry from the wild type SC5314, and use them to study the interaction between macrophages and C. albicans. [Methods] The effects of fluorescent protein expression on the growth, morphology, and virulence of the strains in mice were determined. Under the co-culture condition, flow cytometry and fluorescence microscopy were employed to determine the phagocytosis rate of macrophages and the morphological changes of C. albicans, respectively. [Results] We constructed C. albicans strains expressing GFP or mCherry. These engineered strains had consistent phenotype with the wild type and could be used for flow cytometry to determine the phagocytosis rate of macrophages and the morphological changes of C. albicans in co-culture. [Conclusion] The constructed strains expressing fluorescent proteins provided a new method for studying the interaction between macrophages and C. albicans.

    Reference
    [1] SEEBACHER C. Candida in dermatology[J]. Mycoses, 1999, 42(suppl 1): 63-67.
    [2] SINGH DK, TÓTH R, GÁCSER A. Mechanisms of pathogenic Candida species to evade the host complement attack[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 94.
    [3] PRISTOV KE, GHANNOUM MA. Resistance of Candida to azoles and echinocandins worldwide[J]. Clinical Microbiology and Infection, 2019, 25(7): 792-798.
    [4] NEWMAN SL, HOLLY A. Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells[J]. Infection and Immunity, 2001, 69(11): 6813-6822.
    [5] van der GRAAF CAA, NETEA MG, VERSCHUEREN I, van der MEER JWM, KULLBERG BJ. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae[J]. Infection and Immunity, 2005, 73(11): 7458-7464.
    [6] TANSHO S, ABE S, TANSHO T, YAMAGUCHI H. Effective inhibition of Candida albicans growth by the combination of murine peritoneal neutrophils and activated macrophages[J]. Microbiology and Immunology, 1999, 43(3): 235-240.
    [7] BLASI E, PITZURRA L, PULITI M, LANFRANCONE L, BISTONI F. Early differential molecular response of a macrophage cell line to yeast and hyphal forms of Candida albicans[J]. Infection and Immunity, 1992, 60(3): 832-837.
    [8] KLIPPEL N, BILITEWSKI U. Phagocytosis assay based on living Candida albicans for the detection of effects of chemicals on macrophage function[J]. Analytical Letters, 2007, 40(7): 1400-1411.
    [9] BIE XX, ZHANG SG, LUO X, QI RQ. Candida albicans cell wall mannoprotein synergizes with lipopolysaccharide to affect RAW264.7 proliferation, phagocytosis and apoptosis[J]. Microbial Pathogenesis, 2019, 131: 98-105.
    [10] DIEZ-OREJAS R, CASARRUBIOS L, FEITO MJ, ROJO JM, VALLET-REGÍ M, ARCOS D, PORTOLÉS MT. Effects of mesoporous SiO2-CaO nanospheres on the murine peritoneal macrophages/Candida albicans interface[J]. International Immunopharmacology, 2021, 94: 107457.
    [11] FONZI WA, IRWIN MY. Isogenic strain construction and gene mapping in Candida albicans[J]. Genetics, 1993, 134(3): 717-728.
    [12] VYLKOVA S, LORENZ MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport[J]. PLoS Pathogens, 2014, 10(3): e1003995.
    [13] MURAD AMA, LEE PR, BROADBENT ID, BARELLE CJ, BROWN AJP. CIp10, an efficient and convenient integrating vector for Candida albicans[J]. Yeast, 2000, 16(4): 325-327.
    [14] KIM DB, PARK MC, PARK BK, KWON SH, CHOI JH, KIM HJ, CHOI SY, PARK JS, LEE YH, KWON HJ. Differential expression of cell surface markers in response to 2,4-dinitrofluorobenzene in RAW 264.7 and primary immune cells[J]. BMB Reports, 2012, 45(9): 538-543.
    [15] CIUDAD T, HICKMAN M, BELLIDO A, BERMAN J, LARRIBA G. Phenotypic consequences of a spontaneous loss of heterozygosity in a common laboratory strain of Candida albicans[J]. Genetics, 2016, 203(3): 1161-1176.
    [16] ARBOUR M, EPP E, HOGUES H, SELLAM A, LACROIX C, RAUCEO J, MITCHELL A, WHITEWAY M, NANTEL A. Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants[J]. FEMS Yeast Research, 2009, 9(7): 1070-1077.
    [17] GABRIEL I, KUR K, LAFORCE-NESBITT SS, PULICKAL AS, BLISS JM, MILEWSKI S. Phenotypic consequences of LYS4 gene disruption in Candida albicans[J]. Yeast, 2014, 31(8): 299-308.
    [18] DENNISON PMJ, RAMSDALE M, MANSON CL, BROWN AJP. Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system[J]. Fungal Genetics and Biology, 2005, 42(9): 737-748.
    [19] HU KD, LI WJ, GAO JX, LIU QZ, WANG HT, WANG Y, SANG JL. Role of Ppt1 in multiple stress responses in Candida albicans[J]. Chinese Science Bulletin, 2014, 59(31): 4060-4068.
    [20] CHENG SJ, NGUYEN MH, ZHANG ZD, JIA HY, HANDFIELD M, CLANCY CJ. Evaluation of the roles of four Candida albicans genes in virulence by using gene disruption strains that express URA3 from the native locus[J]. Infection and Immunity, 2003, 71(10): 6101-6103.
    [21] BRAND A, MACCALLUM DM, BROWN AJP, GOW NAR, ODDS FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus[J]. Eukaryotic Cell, 2004, 3(4): 900-909.
    [22] GARCÍA MG, O’CONNOR JE, GARCÍA LL, MARTÍNEZ SI, HERRERO E, del CASTILLO AGUDO L. Isolation of a Candida albicans gene, tightly linked to URA3, coding for a putative transcription factor that suppresses a Saccharomyces cerevisiae aft1 mutation[J]. Yeast (Chichester, England), 2001, 18(4): 301-311.
    [23] CHIBANA H, UNO J, CHO T, MIKAMI Y. Mutation in IRO1 tightly linked with URA3 gene reduces virulence of Candida albicans[J]. Microbiology and Immunology, 2005, 49(10): 937-939.
    [24] DA SILVA DANTAS A, LEE KK, RAZIUNAITE I, SCHAEFER K, WAGENER J, YADAV B, GOW NA. Cell biology of Candida albicans-host interactions[J]. Current Opinion in Microbiology, 2016, 34: 111-118.
    [25] DANHOF HA, LORENZ MC. The Candida albicans ATO gene family promotes neutralization of the macrophage phagolysosome[J]. Infection and Immunity, 2015, 83(11): 4416-4426.
    [26] CABEZÓN V, VIALÁS V, GIL-BONA A, REALES-CALDERÓN JA, MARTÍNEZ-GOMARIZ M, GUTIÉRREZ-BLÁZQUEZ D, MONTEOLIVA L, MOLERO G, RAMSDALE M, GIL C. Apoptosis of Candida albicans during the interaction with murine macrophages: proteomics and cell-death marker monitoring[J]. Journal of Proteome Research, 2016, 15(5): 1418-1434.
    [27] BAIN JM, LEWIS LE, OKAI B, QUINN J, GOW NAR, ERWIG LP. Non-lytic expulsion/exocytosis of Candida albicans from macrophages[J]. Fungal Genetics and Biology, 2012, 49(9): 677-678.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

HU Shaohua, GE Jiaqi, HAN Qi. A Candida albicans strain expressing GFP/mCherry: construction and application in the research on macrophage- C.albicans interaction. [J]. Acta Microbiologica Sinica, 2023, 63(11): 4208-4217

Copy
Share
Article Metrics
  • Abstract:327
  • PDF: 1054
  • HTML: 800
  • Cited by: 0
History
  • Received:March 20,2023
  • Revised:May 16,2023
  • Online: November 03,2023
  • Published: November 04,2023
Article QR Code