Combination of phage PH826 and antibiotics inhibits biofilm formation of multidrug-resistant Pseudomonas aeruginosa
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • | | | |
  • Comments
    Abstract:

    [Objective] Pseudomonas aeruginosa is a major Gram-negative pathogen that can exacerbate lung infections in the patients with cystic fibrosis, which can ultimately lead to death. The emerging multi-drug resistant and pan-drug resistant strains pose challenges to the prevention and control of P. aeruginosa infection. [Methods] A phage capable of lysing multi-drug resistant P. aeruginosa was isolated from farm sewage. The morphological characteristics, biological characteristics, host range, genomic features, and in vitro inhibitory ability of the isolate were studied. The biofilm inhibition test was conducted with both the phage and antibiotics. [Results] The phage PH826 was identified to be a member of the genus Nankokuvirus and it can keep stability within a wide temperature range from 4℃ to 60℃ and pH range (pH 3.0-11.0). The host range test showed that PH826 could lyse 13 P. aeruginosa strains from human and animals. The antibacterial test in vitro showed that PH826 was strongly lytic against P. aeruginosa at multiplicity of infection (MOI) of 10, 1, and 0.1. The genome of PH826 was 87 956 bp in length, with the G+C content of 54.70%, encoding 165 open reading frames (ORFs) including an endolysin gene. The combination of PH826 at 1×MIC (minimum inhibitory concentration, MIC), 2×MIC, or 4×MIC and ciprofloxacin reduced biofilm formation by more than 80% at the time points of 24 h and 48 h. The combination of PH826 at 2×MIC or 4×MIC and meropenem reduced biofilm formation by more than 80% at the time points of 24 h and 48 h. [Conclusion] PH826 may be a potential disinfectant and therapeutic agent that can be used alone or in combination with antibiotics for the prevention and treatment of pathogenic P. aeruginosa.

    Reference
    [1] MONSON R, FOULDS I, FOWERAKER J, WELCH M, SALMOND GPC. The Pseudomonas aeruginosa generalized transducing phage φPA3 is a new member of the φKZ-like group of ‘jumbo’ phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients[J]. Microbiology, 2011, 157(3):859-867.
    [2] TRAPNELL BC, CHU CS, PAAKKO PK, BANKS TC, YOSHIMURA K, FERRANS VJ, CHERNICK MS, CRYSTAL RG. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(15):6565-6569.
    [3] KOCH C. Early infection and progression of cystic fibrosis lung disease[J]. Pediatric Pulmonology, 2002, 34(3):232-236.
    [4] YAMAGUCHI T, YAMADA H. Role of mechanical injury on airway surface in the pathogenesis of Pseudomonas aeruginosa[J]. American Review of Respiratory Disease, 1991, 144(5):1147-1152.
    [5] PARKINS MD, SOMAYAJI R, WATERS VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis[J]. Clinical Microbiology Reviews, 2018, 31(4):e00018-e00019.
    [6] DRENKARD E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms[J]. Microbes and Infection, 2003, 5(13):1213-1219.
    [7] MULCAHY LR, BURNS JL, LORY S, LEWIS K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis[J]. Journal of Bacteriology, 2010, 192(23):6191-6199.
    [8] STREMPEL N, NEIDIG A, NUSSER M, GEFFERS R, VIEILLARD J, LESOUHAITIER O, BRENNER-WEISS G, OVERHAGE J. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa[J]. PLoS One, 2013, 8(12):e82240.
    [9] JACKSON KD, STARKEY M, KREMER S, PARSEK MR, WOZNIAK DJ. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation[J]. Journal of Bacteriology, 2004, 186(14):4466-4475.
    [10] RYDER C, BYRD M, WOZNIAK DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current Opinion in Microbiology, 2007, 10(6):644-648.
    [11] MAH TF, PITTS B, PELLOCK B, WALKER GC, STEWART PS, O'TOOLE GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance[J]. Nature, 2003, 426(6964):306-310.
    [12] COSTERTON JW, STEWART PS, GREENBERG EP. Bacterial biofilms:a common cause of persistent infections[J]. Science, 1999, 284(5418):1318-1322.
    [13] STEWART PS. Mechanisms of antibiotic resistance in bacterial biofilms[J]. International Journal of Medical Microbiology:IJMM, 2002, 292(2):107-113.
    [14] SPOERING AL, LEWIS K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials[J]. Journal of Bacteriology, 2001, 183(23):6746-6751.
    [15] ALAM SARKER S, BERGER B, DENG Y, KIESER S, FOATA F, MOINE D, DESCOMBES P, SULTANA S, HUQ S, BARDHAN PK, VUILLET V, PRAPLAN F, BRÜSSOW H. Oral application of Escherichia coli bacteriophage:safety tests in healthy and diarrheal children from B angladesh[J]. Environmental Microbiology, 2017, 19(1):237-250.
    [16] DANIS-WLODARCZYK KM, CAI A, CHEN AN, GITTRICH MR, SULLIVAN MB, WOZNIAK DJ, ABEDON ST. Friends or foes? Rapid determination of dissimilar colistin and ciprofloxacin antagonism of Pseudomonas aeruginosa phages[J]. Pharmaceuticals, 2021, 14(11):1162.
    [17] OLIVEIRA VC, BIM FL, MONTEIRO RM, MACEDO AP, SANTOS ES, SILVA-LOVATO CH, PARANHOS HFO, MELO LDR, SANTOS SB, WATANABE E. Identification and characterization of new bacteriophages to control multidrug-resistant Pseudomonas aeruginosa biofilm on endotracheal tubes[J]. Frontiers in Microbiology, 2020, 11:580779.
    [18] WANNASRICHAN W, HTOO HH, SUWANSAENG R, POGLIANO J, NONEJUIE P, CHAIKEERATISAK V. Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production[J]. Frontiers in Microbiology, 2022, 13:1004733.
    [19] CHAUDHRY WN, CONCEPCIÓN-ACEVEDO J, PARK T, ANDLEEB S, BULL JJ, LEVIN BR. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms[J]. PLoS One, 2017, 12(1):e0168615.
    [20] de CÁSSIA OLIVEIRA V, STEIXNER S, DO NASCIMENTO C, PAGNANO VO, SILVA-LOVATO CH, de FREITAS OLIVEIRA PARANHOS H, WILFLINGSEDER D, CORAÇA-HUBER D, WATANABE E. Expression of virulence factors by Pseudomonas aeruginosa biofilm after bacteriophage infection[J]. Microbial Pathogenesis, 2021, 154:104834.
    [21] WIRTH E. Soil and plant analysis, by C. S. PIPER. interscience publishers, inc., New York[J]. Journal of the American Pharmaceutical Association, 1946, 35(6):192.
    [22] GU JM, XU W, LEI LC, HUANG J, FENG X, SUN CJ, DU CT, ZUO J, LI Y, DU TF, LI LX, HAN WY. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection[J]. Journal of Clinical Microbiology, 2011, 49(1):111-117.
    [23] CHEN MM, ZHANG L, ABDELGADER SA, YU L, XU JT, YAO HC, LU CP, ZHANG W. Alterations in gp37 expand the host range of a T4-like phage[J]. Applied and Environmental Microbiology, 2017, 83(23):AEM.01576-17.
    [24] KUTTER E. Phage host range and efficiency of plating[J]. Methods in Molecular Biology (Clifton, N J), 2009, 501:141-149.
    [25] LI X, MU X, ZHANG P, ZHAO D, JI J, QUAN J, ZHU Y, YU Y. Detection and characterization of a clinical Escherichia coli ST3204 strain coproducing NDM-16 and MCR-1[J]. Infection and Drug Resistance, 2018, 11:1189-1195.
    [26] SAMBROOK J, RUSSELL DW. Precipitation of bacteriophage λ particles from large-scale lysates[J]. Cold Spring Harbor Protocols, 2006, 2006(1):pdb.prot3966.
    [27] WICK RR, JUDD LM, GORRIE CL, HOLT KE. Unicycler:resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Computational Biology, 2017, 13(6):e1005595.
    [28] BRETTIN T, DAVIS JJ, DISZ T, EDWARDS RA, GERDES S, OLSEN GJ, OLSON R, OVERBEEK R, PARRELLO B, PUSCH GD, SHUKLA M, THOMASON JA, STEVENS R, VONSTEIN V, WATTAM AR, XIA FF. RASTtk:a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes[J]. Scientific Reports, 2015, 5:8365.
    [29] SONG WC, SUN HX, ZHANG C, CHENG L, PENG Y, DENG ZQ, WANG D, WANG Y, HU M, LIU WE, YANG HM, SHEN Y, LI JH, YOU LC, XIAO MF. Prophage Hunter:an integrative hunting tool for active prophages[J]. Nucleic Acids Research, 2019, 47(W1):W74-W80.
    [30] DARLING AE, MAU B, PERNA NT. progressiveMauve:multiple genome alignment with gene gain, loss and rearrangement[J]. PLoS One, 2010, 5(6):e11147.
    [31] KELLEY LA, MEZULIS S, YATES CM, WASS MN, STERNBERG MJE. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nature Protocols, 2015, 10(6):845-858.
    [32] LU SN, WANG JY, CHITSAZ F, DERBYSHIRE MK, GEER RC, GONZALES NR, GWADZ M, HURWITZ DI, MARCHLER GH, SONG JS, THANKI N, YAMASHITA RA, YANG MZ, ZHANG DC, ZHENG CJ, LANCZYCKI CJ, MARCHLER-BAUER A. CDD/SPARCLE:the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(D1):D265-D268.
    [33] KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549.
    [34] SEEMANN T. Prokka:rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14):2068-2069.
    [35] PAGE AJ, CUMMINS CA, HUNT M, WONG VK, REUTER S, HOLDEN MTG, FOOKES M, FALUSH D, KEANE JA, PARKHILL J. Roary:rapid large-scale prokaryote pan genome analysis[J]. Bioinformatics (Oxford, England), 2015, 31(22):3691-3693.
    [36] CHEGINI Z, KHOSHBAYAN A, TAATI MOGHADAM M, FARAHANI I, JAZIREIAN P, SHARIATI A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms:a review[J]. Annals of Clinical Microbiology and Antimicrobials, 2020, 19(1):45.
    [37] CANCHAYA C, FOURNOUS G, BRÜSSOW H. The impact of prophages on bacterial chromosomes[J]. Molecular Microbiology, 2004, 53(1):9-18.
    [38] BAILLY-BECHET M, VERGASSOLA M, ROCHA E. Causes for the intriguing presence of tRNAs in phages[J]. Genome Research, 2007, 17(10):1486-1495.
    [39] AL-SHAYEB B, SACHDEVA R, CHEN LX, WARD F, MUNK P, DEVOTO A, CASTELLE CJ, OLM MR, BOUMA-GREGSON K, AMANO Y, HE C, MÉHEUST R, BROOKS B, THOMAS A, LAVY A, MATHEUS-CARNEVALI P, SUN C, GOLTSMAN DSA, BORTON MA, SHARRAR A, et al. Clades of huge phages from across earth's ecosystems[J]. Nature, 2020, 578(7795):425-431.
    [40] ENAV H, BÉJÀ O, MANDEL-GUTFREUND Y. Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts[J]. The ISME Journal, 2012, 6(3):619-628.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

HU Zimeng, CHEN Weiye, CHEN Xinyi, LI Pei, LI Min, ZHOU Lu, DU Hong, LIU Yuqing, ZHANG Wei, TAN Zhongming. Combination of phage PH826 and antibiotics inhibits biofilm formation of multidrug-resistant Pseudomonas aeruginosa. [J]. Acta Microbiologica Sinica, 2024, 64(2): 473-488

Copy
Share
Article Metrics
  • Abstract:363
  • PDF: 961
  • HTML: 602
  • Cited by: 0
History
  • Received:June 23,2023
  • Revised:September 06,2023
  • Online: January 31,2024
  • Published: February 04,2024
Article QR Code