Transcriptional regulation of type VI secretion system 1 genes by QsvR in Vibrio parahaemolyticus
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] To study the transcriptional regulation of type VI secretion system 1 (T6SS1) genes by QsvR in Vibrio parahaemolyticus. [Methods] Total RNA was extracted from the wild type (WT) and qsvR mutant (ΔqsvR). Quantitative real-time PCR (qPCR) was employed to investigate the transcriptional regulation of target genes by QsvR. Primer extension was carried out to detect the transcription initiation site and core promoter for each target gene and calculate the transcriptional variations between WT and ΔqsvR. The regulatory DNA region of each target gene was cloned into the restriction endonuclease sites of pHRP309 harboring a promoterless gene lacZ, and then each recombinant plasmid was transferred into WT and ΔqsvR, respectively. A β-Galactosidase Enzyme Assay System (Promega) was used to measure the β-galactosidase activity in cell lysates. The recombinant pHRP309 vector containing the regulatory DNA region of one of the target gene was transferred into Escherichia coli 100λpir harboring an empty pBAD33 or pBAD33-qsvR to test whether QsvR can regulate the target genes in a heterologous host. The regulatory DNA region of each target gene was amplified by PCR, and His-QsvR was over-expressed and then purified under native conditions with nickel loaded HiTrap Chelating Sepharose columns (Amersham). Electrophoretic mobility shift assay (EMSA) was employed to determine the DNA-binding activity of His-QsvR to each target DNA fragment in vitro. [Results] The mRNA levels of T6SS1-associated genes, VP1388 (the first gene of VP1388-1390 operon) and hcp1 (the first gene of VP1393-1406 operon), were significantly up-regulated in ΔqsvR relative to those in WT, indicating that QsvR activated the transcription of VP1388 and hcp1. Only one transcription initiation site was detected for VP1388 or hcp1, locating at 64 bp upstream of VP1388 and 62 bp upstream of hcp1, respectively, and their transcriptional activities were all repressed by QsvR. QsvR repressed the promoter activities of VP1388 and hcp1 in both V. parahaemolyticus and E. coli 100λpir. His-QsvR was able to bind to the regulatory DNA regions of VP1388 and hcp1. [Conclusion] QsvR directly repressed the transcription of T6SS1-associated operons, VP1388-1390 and VP1393-1406, in V. parahaemolyticus.

    Reference
    [1] CHEN LL, SUN L, ZHANG RH, LIAO NB, QI XJ, CHEN J. Surveillance for foodborne disease outbreaks in Zhejiang Province, China, 2015-2020[J]. BMC Public Health, 2022, 22(1):1-9.
    [2] YANG C, LI YH, JIANG M, WANG L, JIANG YX, HU LL, SHI XL, HE LH, CAI R, WU S, QIU YQ, LU LY, ZUO L, CHEN QC, WU YR, MARTINEZ-URTAZA J, WAN CS, YANG RF, CUI YJ, HU QH. Outbreak dynamics of foodborne pathogen Vibrio parahaemolyticus over a seventeen year period implies hidden reservoirs[J]. Nature Microbiology, 2022, 7(8):1221-1229.
    [3] BROBERG CA, CALDER TJ, ORTH K. Vibrio parahaemolyticus cell biology and pathogenicity determinants[J]. Microbes and Infection, 2011, 13(12/13):992-1001.
    [4] LI LZ, MENG HM, GU D, LI Y, JIA MD. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis[J]. Microbiological Research, 2019, 222:43-51.
    [5] GALLIQUE M, BOUTEILLER M, MERIEAU A. The type VI secretion system:a dynamic system for bacterial communication?[J]. Frontiers in Microbiology, 2017, 8:1454.
    [6] MAKINO K, OSHIMA K, KUROKAWA K, YOKOYAMA K, UDA T, TAGOMORI K, IIJIMA Y, NAJIMA M, NAKANO M, YAMASHITA A, KUBOTA Y, KIMURA S, YASUNAGA T, HONDA T, SHINAGAWA H, HATTORI M, IIDA T. Genome sequence of Vibrio parahaemolyticus:a pathogenic mechanism distinct from that of V. cholerae[J]. Lancet, 2003, 361(9359):743-749.
    [7] YU Y, YANG H, LI J, ZHANG PP, WU BB, ZHU BL, ZHANG Y, FANG WH. Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers[J]. Archives of Microbiology, 2012, 194(10):827-835.
    [8] SALOMON D, GONZALEZ H, UPDEGRAFF BL, ORTH K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2[J]. PLoS One, 2013, 8(4):e61086.
    [9] WANG R, XIAO JZ, WANG QY, ZHAO WY, LIU XY, LIU Y, FU SZ. Genomic analysis of a new type VI secretion system in Vibrio parahaemolyticus and its implications for environmental adaptation in shrimp ponds[J]. Canadian Journal of Microbiology, 2023, 69(1):53-61.
    [10] ZHANG YQ, XUE XF, SUN FJ, LI X, ZHANG MM, WU QM, ZHANG TT, LUO X, LU RF. Quorum sensing and QsvR tightly control the transcription of vpa0607 encoding an active RNase II-type protein in Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2023, 14:1123524.
    [11] ZHANG YQ, HU LH, QIU Y, OSEI-ADJEI G, TANG H, ZHANG Y, ZHANG R, SHENG XM, XU SG, YANG WH, YANG HY, YIN Z, YANG RF, HUANG XX, ZHOU DS. QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence[J]. Environmental Microbiology, 2019, 21(3):1054-1067.
    [12] ZHANG MM, XUE XF, LI X, WU QM, ZHANG TT, YANG WH, HU LF, ZHOU DS, LU RF, ZHANG YQ. QsvR and OpaR coordinately repress biofilm formation by Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2023, 14:1079653.
    [13] QIU Y, HU LF, YANG WH, YIN Z, ZHOU DS, YANG HY, ZHANG YQ. The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR[J]. Microbial Pathogenesis, 2020, 149:104579.
    [14] ZHANG YQ, QIU Y, XUE XF, ZHANG MM, SUN JF, LI X, HU LF, YIN Z, YANG WH, LU RF, ZHOU DS. Transcriptional regulation of the virulence genes and the biofilm formation associated operons in Vibrio parahaemolyticus[J]. Gut Pathogens, 2021, 13(1):15.
    [15] ZHANG MM, XUE XF, LI X, LUO X, WU QM, ZHANG TT, YANG WH, HU LF, ZHOU DS, LU RF, ZHANG YQ. QsvR represses the transcription of polar flagellum genes in Vibrio parahaemolyticus[J]. Microbial Pathogenesis, 2023, 174:105947.
    [16] GAO H, ZHANG YQ, YANG L, LIU X, GUO ZB, TAN YF, HAN YP, HUANG XX, ZHOU DS, YANG RF. Regulatory effects of cAMP receptor protein (CRP) on porin genes and its own gene in Yersinia pestis[J]. BMC Microbiology, 2011, 11:40.
    [17] 张义全, 高鹤, 王丽, 罗张, 谭亚芳, 郭兆彪, 杨瑞馥, 周冬生. 鼠疫菌H-NS蛋白的表达与纯化及其DNA结合活性分析[J]. 微生物学报, 2011, 51(5):615-621. ZHANG YQ, GAO H, WANG L, LUO Z, TAN YF, GUO ZB, YANG RF, ZHOU DS. Purification of recombinant H-NS protein of Yersinia pestis and characterization of its DNA binding activity[J]. Acta Microbiologica Sinica, 2011, 51(5):615-621(in Chinese).
    [18] ZHANG YQ, QIU YF, TAN YF, GUO ZB, YANG RF, ZHOU DS. Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus[J]. PLoS One, 2012, 7(4):e34622.
    [19] 陆仁飞, 孙君芳, 薛星帆, 张苗苗, 李雪, 吴齐敏, 张义全. OpaR对副溶血弧菌pilABCD操纵子的调控研究[J]. 中华微生物学和免疫学杂志, 2021, 41(12):906-911. LU RF, SUN JF, XUE XF, ZHANG MM, LI X, WU QM, ZHANG YQ. Transcriptional regulation of pilABCD by OpaR in Vibrio parahaemolyticus[J]. Chinese Journal of Microbiology and Immunology, 2021, 41(12):906-911(in Chinese).
    [20] PARALES RE, HARWOOD CS. Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for Gram bacteria[J]. Gene, 1993, 133(1):23-30.
    [21] WANG L, ZHOU DS, MAO PY, ZHANG YQ, HOU J, HU Y, LI J, HOU SJ, YANG RF, WANG RH, QIU JF. Cell density-and quorum sensing-dependent expression of type VI secretion system 2 in Vibrio parahaemolyticus[J]. PLoS One, 2013, 8(8):e73363.
    [22] ZHANG YQ, GAO H, OSEI-ADJEI G, ZHANG Y, YANG WH, YANG HY, YIN Z, HUANG XX, ZHOU DS. Transcriptional regulation of the type VI secretion system 1 genes by quorum sensing and ToxR in Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2017, 8:2005.
    [23] SALOMON D, KLIMKO JA, ORTH K. H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1[J]. Microbiology (Reading), 2014, 160(Pt 9):1867-1873.
    [24] BEN-YAAKOV R, SALOMON D. The regulatory network of Vibrio parahaemolyticus type VI secretion system 1[J]. Environmental Microbiology, 2019, 21(7):2248-2260.
    [25] METZGER LC, MATTHEY N, STOUDMANN C, COLLAS EJ, BLOKESCH M. Ecological implications of gene regulation by TfoX and TfoY among diverse Vibrio species[J]. Environmental Microbiology, 2019, 21(7):2231-2247.
    [26] ZHANG LY, OSEI-ADJEI G, ZHANG Y, GAO H, YANG WH, ZHOU DS, HUANG XX, YANG HY, ZHANG YQ. CalR is required for the expression of T6SS2 and the adhesion of Vibrio parahaemolyticus to HeLa cells[J]. Archives of Microbiology, 2017, 199(6):931-938.
    [27] 陆仁飞, 李雪, 薛星帆, 张苗苗, 孙君芳, 高鹤, 周冬生, 张义全. CalR激活副溶血弧菌Ⅵ型分泌系统1相关基因的转录[J]. 微生物学报, 2022, 62(2):715-726. LU RF, LI X, XUE XF, ZHANG MM, SUN JF, GAO H, ZHOU DS, ZHANG YQ. CalR activates the transcription of type Ⅵ secretion system 1 genes in Vibrio parahaemolyticus[J]. Acta Microbiologica Sinica, 2022, 62(2):715-726(in Chinese).
    [28] SUN FJ, ZHANG YQ, QIU YF, YANG HY, YANG WH, YIN Z, WANG J, YANG RF, XIA PY, ZHOU DS. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2014, 5:675.
    [29] 王洁, 董新波, 高丽晓, 周冬生, 殷喆, 张义全. H-NS蛋白对副溶血弧菌hcp1的转录调控[J]. 微生物学报, 2016, 56(1):143-149. WANG J, DONG XB, GAO LX, ZHOU DS, YIN Z, ZHANG YQ. Transcriptional regulation of hcp1 by H-NS in Vibrio parahaemolyticus[J]. Acta Microbiologica Sinica, 2016, 56(1):143-149(in Chinese).
    [30] GU D, ZHANG YK, WANG KR, LI MZ, JIAO XN. Characterization of the RpoN regulon reveals the regulation of motility, T6SS2 and metabolism in Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2022, 13:1025960.
    [31] WU QM, LI X, ZHANG TT, ZHANG MM, XUE XF, YANG WH, HU LF, YIN Z, ZHOU DS, SUN YY, LU RF, ZHANG YQ. Transcriptomic analysis of Vibrio parahaemolyticus underlying the wrinkly and smooth phenotypes[J]. Microbiology Spectrum, 2022, 10(5):e0218822.
    Cited by
Get Citation

WU Yan, QIU Yue, WU Qimin, ZHANG Miaomiao, LI Xue, ZHANG Yiquan, LU Renfei. Transcriptional regulation of type VI secretion system 1 genes by QsvR in Vibrio parahaemolyticus. [J]. Acta Microbiologica Sinica, 2024, 64(2): 597-606

Copy
Share
Article Metrics
  • Abstract:149
  • PDF: 772
  • HTML: 359
  • Cited by: 0
History
  • Received:July 22,2023
  • Revised:August 30,2023
  • Online: January 31,2024
  • Published: February 04,2024
Article QR Code